1. Trang chủ
  2. » Tất cả

Đề thi tham khảo môn toán (848)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Định dạng
Số trang 5
Dung lượng 119,9 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Giá trị lớn nhất của hàm số y = ( √ π)sin 2x trên R bằng? A 1 B π C 0 D √ π Câu 2[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Giá trị lớn nhất của hàm số y= (√π)sin 2x

trên R bằng?

Câu 2 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường

tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện

A. π√3.a2

π√2.a2

2π√2.a2

√ 3.a2

Câu 3 Tập nghiệm của bất phương trình log 1

2 (x − 1) ≥ 0 là:

Câu 4 Cho hàm số y=

x

3

− mx+5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị

Câu 5 Cho hàm số f (x) thỏa mãn f′′(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)

A f (−1)= −3 B f (−1)= 3 C f (−1)= −5 D f (−1)= −1

Câu 6 Đường cong trong hình bên là đồ thị của hàm số nào?

A y= x4+ 1 B y= −x4+ 1 C y= x4+ 2x2+ 1 D y= −x4+ 2x2+ 1

Câu 7 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất

A 0 < m < 2 B −2 < m < 2 C −2 ≤ m ≤ 2 D m= 2

Câu 8 Tính nguyên hàmR cos 3xdx

A 3 sin 3x+ C B −1

3sin 3x+ C D −3 sin 3x+ C

Câu 9 Tâm I và bán kính R của mặt cầu (S ) : (x − 1)2+ (y + 2)2+ (z − 3)2 = 9 là:

A I(1; −2; 3); R= 3 B I(1; 2; 3); R= 3 C I(−1; 2; −3); R = 3 D I(1; 2; −3); R = 3.

Câu 10. R 6x5dxbằng

6x

6+ C D 6x6+ C

Câu 11 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?

A.→−n = (2; −3; 4) B.→−n = (−2; 3; 1) C.→−n = (2; 3; −4) D.→−n = (−2; 3; 4)

Câu 12 Thể tích khối lập phương có cạnh 3a là:

Câu 13 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho

3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất

A M(−3

4;

1

3

4;

1

3

4;

3

3

4;

1

2; 2).

Câu 14 Đồ thị hàm số y= x3− 3x2− 2x cắt trục hoành tại mấy điểm?

Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:

A −x+ 2y + 2z + 4 = 0 B 3x − 4y+ 6z + 34 = 0

Trang 2

Câu 16 Trong các số phức z thỏa mãn

z − i =

¯z − 2 − 3i

Hãy tìm z có môđun nhỏ nhất

A z= −6

5 −

27

5 + 6

5 −

6

5 + 27

5 i.

Câu 17 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón

đã cho bằng

Câu 18 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:

A y′ = πxπ B y′ = πxπ−1 C y′ = 1

πxπ−1 D y′ = xπ−1

Câu 19 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

Câu 20 Cho hàm số f (x)= cos x + x Khẳng định nào dưới đây đúng?

A.R f(x)dx= − sin x + x2+ C B. R f(x)dx= sin x + x2+ C

C.R f(x)dx= sin x + x2

2 + C

Câu 21 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

Câu 22 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 23 Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x)= m có ba nghiệm thực phân biệt?

Câu 24 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R2

0 f(2x)dx bằng

Câu 25 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng

định nào dưới đây đúng?

Câu 26 Cho cấp số nhân (un) với u1= 2 và công bội q = 1

2 Giá trị của u3 bằng

1

1

2.

Câu 27 Tập nghiệm của bất phương trình 2x +1< 4 là

Câu 28 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số

đã cho là

Câu 29 NếuR4

−1 f(x)= 2 và R−14 g(x)= 3 thì R−14[ f (x)+ g(x)] bằng

Câu 30 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:

A y′ = πxπ−1 B y′ = 1πxπ−1 C y′ = xπ−1 D y′ = πxπ

Câu 31 Cho hàm số y= f (x) có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Trang 3

Câu 32 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R2

0 f(2x) bằng

3

2.

Câu 33 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 34 Cho số phức z thỏa mãn |z|= 4 Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i

là một đường tròn Tính bán kính r của đường tròn đó

Câu 35 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1

z+ z + 2i là số thuần ảo?

A Một đường tròn B Một Elip C Một đường thẳng D Một Parabol.

Câu 36 Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i|= |(1 + i)z| Diện tích hình phẳng (H) là

Câu 37 Cho các số phức z, w khác 0 được biểu diễn bởi hai điểm A, B trong mặt phẳng Oxy Nếu z

w là

số thuần ảo thì mệnh đề nào sau đây đúng?

A Tam giác OAB là tam giác vuông B Tam giác OAB là tam giác nhọn.

C Tam giác OAB là tam giác cân D Tam giác OAB là tam giác đều.

Câu 38 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là

A Parabol B Hai đường thẳng C Một đường thẳng D Đường tròn.

Câu 39 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?

A. 1

2 < |z| < 3

3

1

2.

Câu 40 (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M′ Số phức ω= (4+3i)z

và ω có điểm biểu diễn lần lượt là N và N′ Biết rằng M, M′, N, N′ là bốn đỉnh của hình chữ nhật Tìm giá trị nhỏ nhất của ⇒ |z+ 4i − 5| ≥ √1

2 ⇔ x= 9

2 ⇔ z= 9

2 −

9

2i|z+ 4i − 5|

A. √1

2

4

1

2.

Câu 41 Gọi z1và z2là các nghiệm của phương trình z2− 2z+ 10 = 0 Gọi M, N, P lần lượt là các điểm biểu diễn của z1, z2và số phức w= x + iy trên mặt phẳng phức Để tam giác MNP đều là số phức k là

A w= 1 + √27 hoặcw= 1 − √27 B w= −√27 − i hoặcw= −√27+ i

Câu 42 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1 Tìm giá trị lớn nhất của biểu thức T = |z + 1| + 2|z − 1|

A max T = 3√2 B max T = 2√5 C max T = 2√10 D max T = 3√5

Câu 43 Cho mặt cầu (S ) có bán kính bằng R = 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu

A. 500π

3

250π√3

400π√3

125π√3

Câu 44 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox

A m < −2 B m > 1 hoặc m < −1

3 C m > 1. D m > 2 hoặc m < −1.

Câu 45 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R

A −4 ≤ m ≤ −1 B m < 0 C −3 ≤ m ≤ 0 D m > −2.

Trang 4

Câu 46 Trong không gian với hệ trục tọa độ Oxyz cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc

tơ 2→−u + 3−→v

A 2→−u + 3−→v = (1; 14; 15) B 2→−u + 3−→v = (2; 14; 14)

C 2→−u + 3−→v = (3; 14; 16) D 2→−u + 3−→v = (1; 13; 16)

Câu 47 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng

vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√

3 Tính thể tích khối chóp S ABC

A. a

3√

5

a3√ 15

a3√ 15

a3√ 15

16 .

Câu 48 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)

Câu 49 Cho hình lăng trụ đứng ABCD.A

B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;

AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′ Tính giá trị cos α

A.

5

√ 3

√ 3

1

2.

Câu 50 Cho bất phương trình 3

√ 2(x−1) +1− 3x ≤ x2− 4x+ 3 Tìm mệnh đề đúng

A Bất phương trình đúng với mọi x ∈ [ 1; 3].

B Bất phương trình vô nghiệm.

C Bất phương trình có nghiệm thuộc khoảng (−∞; 1).

D Bất phương trình đúng với mọi x ∈ (4;+∞)

Trang 5

HẾT

Ngày đăng: 05/04/2023, 18:30

🧩 Sản phẩm bạn có thể quan tâm