Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình phẳng (D) giới hạn bởi các đường y = √ x, y = x, x = 2 quay qua[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hình phẳng (D) giới hạn bởi các đường y = √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành?
A V = 10π
Câu 2 Phương trình tiếp tuyến với đồ thị hàm số y= log5xtại điểm có hoành độ x= 5 là:
A y= x
5 ln 5− 1+ 1
5 ln 5 + 1
C y= x
5 ln 5+ 1 − 1
5 ln 5 −
1
ln 5.
Câu 3 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?
A |→−u | = 1 B |→−u |= √3 C |→−u |= 9 D |→−u |= 3
Câu 4 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là một
điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi Tọa độ điểm C là:
A C(6; 21; 21) B C(20; 15; 7) C C(6; −17; 21) D C(8;21
2 ; 19).
Câu 5 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E
A (0; −2; 0) B (0; 6; 0) C (0; 2; 0) D (−2; 0; 0).
Câu 6 Cho lăng trụ đều ABC.A′B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′
A.
√
3a
2a
√
5.
C.
√ 5a
a
√
5.
Câu 7 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1
x là đúng?
A Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞) B Hàm số nghịch biến trên (0;+∞)
C Hàm số đồng biến trên R D Hàm số nghịch biến trên R.
Câu 8 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R
A m > e2 B m > 2e C m > 2 D m ≥ e−2
Câu 9 Nếu
6
R
1
f(x)= 2 vàR6
1
g(x)= −4 thìR6
1
( f (x)+ g(x)) bằng
Câu 10 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : x −2
−1 = x −1
A(2 ; 0 ; 3) Toạ độ điểm A′đối xứng với A qua đường thẳng d tương ứng là
A (8
3; −
2
3;
7
10
2 ; −
4
3;
5
3). C (2 ; −3 ; 1). D (
2
3; −
4
3;
5
3).
Câu 11 Tổng tất cả các nghiệm của phương trình log2(6 − 2x)= 1 − x bằng
Câu 12 Đạo hàm của hàm số y= (2x + 1)−
1
3 trên tập xác định là
Trang 2A (2x+ 1)−
1
1
3 ln(2x+ 1)
C −2
3(2x+ 1)−
4
3(2x+ 1)−
4
3
Câu 13 Bất phương trình log2021(x − 1) ≤ 0 có bao nhiêu nghiệm nguyên?
Câu 14 Cho số phức zthỏa mãn
z
i+ 2
= 1 Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường tròn (C) Tính bán kính rcủa đường tròn (C)
Câu 15 Trên tập số phức, cho phương trình z2+ 2(m − 1)z + m2+ 2m = 0 Có bao nhiêu tham số m để phương trình đã cho có hai nghiệm phân biệt z1; z2thõa mãn
z1
2
+
z2
2
= 5
Câu 16 Cho hàm số y= f (x) có bảng biến thiên như sau
Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?
Câu 17 Cho số phức z thỏa mãn z= 4(−3+ i)
1 − 2i + (3 − i)2
−i Mô-đun của số phức w= z − iz + 1 là
A |w|= 6√3 B |w|= √48 C |w|= √85 D |w|= 4√5
Câu 18 Cho số phức z= 2 + 5i Tìm số phức w = iz + z
Câu 19 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 20 Phần thực của số phức z= 4 − 2i
2 − i + (1 − i)(2+ i)
A. 29
11
29
11
13.
Câu 21 Với mọi số phức z, ta có |z+ 1|2bằng
A z2+ 2z + 1 B z+ z + 1 C |z|2+ 2|z| + 1 D z · z+ z + z + 1
Câu 22 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?
Câu 23 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2
A |z1+ z2|= 5 B |z1+ z2|= 1 C |z1+ z2|= √5 D |z1+ z2|= √13
Câu 24 Những số nào sau đây vừa là số thực và vừa là số ảo?
A C.Truehỉ có số 0 B 0 và 1 C Không có số nào D Chỉ có số 1.
Câu 25 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 26 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 27 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R2
0 f(2x) bằng
3
Trang 3Câu 28 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là
Câu 29 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Câu 30 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên
Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
Câu 31 Cho khối lăng trụ đứng ABC · A′B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′
BC) bằng
√ 6
3 a, thể tích khối lăng trụ đã cho bằng
√ 2
6 a
√ 2
4 a
√ 2
2 a
3
Câu 32 Xét các số phức z thỏa mãn
z2− 3 − 4i
= 2 z
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của
z
Giá trị của M2+ m2bằng
Câu 33 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n4= (1; 1; −1) B.→−n3 = (1; 1; 1) C.→−n2 = (1; −1; 1) D.→−n1 = (−1; 1; 1)
Câu 34 Cho số phức z , 0 sao cho z không phải là số thực và w = z
1+ z2 là số thực Tính giá trị biểu thức |z|
1+ |z|2 bằng?
√ 2
1
1
5.
Câu 35 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 9
4;+∞
!
4
!
4;
5 4
!
2;
9 4
!
Câu 36 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
A |z|= 2 B |z|= 1
Câu 37 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 3
2 < |z| < 2 B. 1
2 < |z| < 3
2. C 2 < |z| <
5
5
2 < |z| < 7
2.
Câu 38 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A |z| < 1
3
1
2 < |z| < 3
2.
Câu 39 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Trang 4Câu 40 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 41 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min = 3
2. B |w|min = 2 C |w|min = 1 D |w|min= 1
2.
Câu 42 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
Câu 43 Cho số phức z= (1 + i)2(1+ 2i) Số phức z có phần ảo là
Câu 44 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?
A.
√
3
1
√ 15
√ 3
5 .
Câu 45 Tâm I và bán kính R của mặt cầu (S ) : (x − 1)2+ (y + 2)2+ (z − 3)2 = 9 là:
A I(−1; 2; −3); R = 3 B I(1; 2; 3); R = 3 C I(1; −2; 3); R= 3 D I(1; 2; −3); R= 3
Câu 46 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là
A (−∞; 3] B (−∞; −3] ∪ [3; +∞) C (0; 3] D [−3; 3].
Câu 47 Đồ thị hàm số y= x+ 1
x −2 (C) có các đường tiệm cận là
A y= −1 và x = 2 B y= 2 và x = 1 C y= 1 và x = 2 D y= 1 và x = −1
Câu 48 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho
3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất
A M(−3
4;
3
3
4;
1
3
4;
1
3
4;
1
2; 2).
Câu 49 Đồ thị hàm số y= x3− 3x2− 2x cắt trục hoành tại mấy điểm?
Câu 50 Biết
3
R
2
f(x)dx= 3 vàR3
2
g(x)dx= 1 Khi đóR3
2
[ f (x)+ g(x)]dx bằng
Trang 5HẾT