1. Trang chủ
  2. » Tất cả

Đề kiểm tra thpt môn toán (704)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 124,46 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Bất đẳng thức nào sau đây là đúng? A ( √ 3 + 1) π > ( √ 3 + 1) e B ( √ 3[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Bất đẳng thức nào sau đây là đúng?

A (√3+ 1)π > (√3+ 1)e B (√3 − 1)e < (√3 − 1)π

Câu 2 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?

A ln x > ln y B log 1

a

x> log1

a

y C logax> logay D log x > log y.

Câu 3 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp là:

A VS.ABC = a2

√ 3b2− a2

√ 3ab2

12 .

C VS.ABC = a

2

q

b2− √3a2

√ 3a2b

12 .

Câu 4 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5 = 0 Bán kính R của (S) bằng bao nhiêu?

Câu 5 Cho số thực dươngm Tính I = Rm

0

dx

x2+ 3x + 2 theo m?

A I = ln(2m+ 2

m+ 2 ). B I = ln(

m+ 2 2m+ 2). C I = ln(

m+ 1

m+ 2). D I = ln(

m+ 2

m+ 1).

Câu 6 Cho lăng trụ đều ABC.A

B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′

A.

3a

a

√ 5

√ 5a

2a

√ 5

Câu 7 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?

Câu 8 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng?

x −1 .

Câu 9 Cho hình chóp đều S ABCD có cạnh đáy bằng a√2 và đường cao S H bằng a

√ 2

2 Tính góc giữa mặt bên (S DC) và mặt đáy

Câu 10 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) và N( 3; 2; −1) Đường thẳng

MN có phương trình tham số là

Câu 11 Cho hàm số f (x)=

− 1

3x

3+ 1

2(2m+ 3)x2− (m2+ 3m)x + 2

3

Có bao nhiêu giá trị nguyên của tham số m thuộc [−9; 9] để hàm số nghịch biến trên khoảng (1; 2)?

Trang 2

Câu 12 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh

đươc chon tao thanh tam giac đêu la

A P = 1

220.

Câu 13 Cho hàm số y= ax+ b

cx+ d có đồ thị là đường cong trong hình vẽ bên Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Câu 14 Cho hàm số f (x) liên tục trên R và

2

R

0

( f (x)+ 2x) = 5 TínhR2

0

f(x)

Câu 15 Đường thẳng y= 2 là tiệm cận ngang của đồ thị nào dưới đây?

A y= 1+ x

2

−2x+ 3

x −2 .

Câu 16 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là

A.→−n = (1; −2; 3) B.→−n = (1; 3; −2) C.→−n = (1; 2; 3) D.→−n = (1; −2; −1)

Câu 17 Số phức z= 4+ 2i + i2017

2 − i có tổng phần thực và phần ảo là

Câu 18 Cho số phức z= 2 + 5i Tìm số phức w = iz + z

Câu 19 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là

Câu 20 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là

A 0 ≤ m ≤ 1 B −1 ≤ m ≤ 0 C m ≥ 1 hoặc m ≤ 0 D m ≥ 0 hoặc m ≤ −1 Câu 21 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A. 29

11

11

29

13.

Câu 22 Tìm số phức liên hợp của số phức z= i(3i + 1)

Câu 23 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z

A Phần thực là3 và phần ảo là 2 B Phần thực là −3 và phần ảo là−2.

C Phần thực là 3 và phần ảo là 2i D Phần thực là−3 và phần ảo là −2i.

Câu 24 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= √34 B |z|= 34 C |z|= 5

√ 34

√ 34

3 .

Câu 25 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?

Câu 26 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′

(x) bằng

A. 5

1

4

1

4.

Câu 27 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1

3x − 1 là đường thẳng có phương trình:

A y= 2

3.

Trang 3

Câu 28 Trong không gian Oxyz, cho đường thẳng d : x −1

−1 = z+ 3

−2 Điểm nào dưới đây thuộc d?

A Q(1; 2; −3) B P(1; 2; 3) C N(2; 1; 2) D M(2; −1; −2).

Câu 29 Xét các số phức z thỏa mãn

z2− 3 − 4i

= 2 z

Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của

z

Giá trị của M2+ m2bằng

Câu 30 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 31 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)

Góc giữa hai mặt phẳng (S BC) và (ABC) bằng

Câu 32 NếuR4

−1 f(x)= 2 và R4

−1g(x)= 3 thì R4

−1[ f (x)+ g(x)] bằng

Câu 33 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng

3

2.

Câu 34 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

Câu 35 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức

P= |z1+ z2|

√ 3

√ 2

2 .

Câu 36 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 0;1

4

!

2;

9 4

!

4;+∞

!

4;

5 4

!

Câu 37 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Câu 39 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 1 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8

3. D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2

√ 2

3 .

Trang 4

Câu 40 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?

1

Câu 41 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A |z| > 2 B |z| < 1

3

1

2 < |z| < 3

2.

Câu 42 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min = 2 B |w|min = 3

2. C |w|min = 1

2. D |w|min= 1

Câu 43 Cho cấp số nhân (un) với u1= −1

2; u7= −32 Tìm q?

A q= ±1

Câu 44 Số phức z= 5 − 2i có điểm biểu diễn trên mặt phẳng tọa độ là M Tìm tọa độ điểm M

Câu 45 Hàm số y = (x + m)3+ (x + n)3

− x3 đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng

−1

16.

Câu 46 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?

A.

3

√ 15

√ 3

1

2.

Câu 47. R 6x5dxbằng

6x

Câu 48 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:

C x − 2y − 2z − 4= 0 D −x+ 2y + 2z + 4 = 0

Câu 49 Cho lăng trụ đứng ABC.A

B′C′có cạnh BC= 2a, góc giữa hai mặt phẳng (ABC) và (A′

BC)bằng

600Biết diện tích của tam giác∆A′BC bằng 2a2Tính thể tích V của khối lăng trụ ABC.A′B′C′

A V = a3√

√ 3

Câu 50 Cho hình chóp S ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên S A vuông góc với mặt

phẳng đáy Biết S A= 3a, tính thể tích V của khối chóp S.ABCD

A V = 3a3 B V = a3

Trang 5

HẾT

Ngày đăng: 05/04/2023, 11:11