Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = ax + b cx + d có đồ thị như hình vẽ bên Kết luận nào sau[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hàm số y= ax+ b
cx+ d có đồ thị như hình vẽ bên Kết luận nào sau đây là sai?
A ab < 0 B ad > 0 C bc > 0 D ac < 0.
Câu 2 Hàm số nào sau đây không có cực trị?
Câu 3 Cho số thực dươngm Tính I =
m R 0
dx
x2+ 3x + 2 theo m?
A I = ln( m+ 2
2m+ 2). B I = ln(
m+ 2
m+ 1). C I = ln(
m+ 1
m+ 2). D I = ln(
2m+ 2
m+ 2 ).
Câu 4 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là
4πR3
Câu 5 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M′đối xứng với M qua mặt phẳng Oxz?
A M′
(−2; −3; −1) B M′
(−2; 3; 1)
Câu 6 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?
A |→−u | = 3
B |→−u |= √3 C |→−u |= 1 D |→−u |= 9
Câu 7 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1
x là đúng?
A Hàm số đồng biến trên R B Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞)
C Hàm số nghịch biến trên (0;+∞) D Hàm số nghịch biến trên R.
Câu 8 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai?
A loga2x= 1
logax = x
C logax2 = 2logax D loga(x − 2)2 = 2loga(x − 2)
Câu 9 Cân phân công 3 ban tư môt tô 10 ban đê lam trưc nhât Hoi co bao nhiêu cach phân công khac
nhau
Câu 10 Đường thẳng y= 2 là tiệm cận ngang của đồ thị nào dưới đây?
A y= 1+ x
2
−2x+ 3
x −2 .
Câu 11 Cho khối lăng trụ đứng ABC.A′
B′C′ có đáy ABC là tam giác vuông cân tại A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng
√ 3
3 a Tính thể tích của khối lăng trụ ABC.A
′B′C′
A. a
3
a3√ 2
a3√ 2
a3
6.
Câu 12 Điểm M trong hình vẽ bên dưới biểu thị cho số phức Khi đó số phức w= 4z là
Câu 13 Cho hai số phức u, v thỏa mãn
u
= v
= 10 và
3u − 4v
= 50 Tìm giá trị lớn nhất của biểu thức
4u+ 3v − 8 + 6i
Trang 2
A 60 B 30 C 50 D 40.
Câu 14 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực đại của đồ thị hàm số đã cho có tọa độ là
Câu 15 Nếu
6 R 1
f(x)= 2 vàR6
1
g(x)= −4 thìR6
1 ( f (x)+ g(x)) bằng
Câu 16 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình vẽ bên Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Câu 17 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 18 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1
A |z|=
√
34
√ 34
Câu 19 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A z · z = a2− b2 B |z2|= |z|2 C z+ z = 2bi D z − z= 2a
Câu 20 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là
A 0 ≤ m ≤ 1 B m ≥ 0 hoặc m ≤ −1 C −1 ≤ m ≤ 0 D m ≥ 1 hoặc m ≤ 0 Câu 21 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗
Hỏi đâu là phương án đúng?
Câu 22 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là 3 và phần ảo là 2i B Phần thực là −3 và phần ảo là−2.
C Phần thực là3 và phần ảo là 2 D Phần thực là−3 và phần ảo là −2i.
Câu 23 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 24 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là
Câu 25 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= −21009i B (1+ i)2018 = −21009 C (1+ i)2018 = 21009 D (1+ i)2018 = 21009i
Câu 26 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2thỏa mãn
z1
+ z2
= 2?
Câu 27 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và
y= 0 quanh trục Ox bằng
A. 16
16π
16π
16
9 .
Câu 28 Xét các số phức z thỏa mãn
z2− 3 − 4i
= 2 z
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của
z
Giá trị của M2+ m2 bằng
Trang 3Câu 29 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+
y2+ 24x)?
Câu 30 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên
Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
Câu 31 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π
3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng
A. 24
5
√
Câu 32 Có bao nhiêu số nguyên x thỏa mãn log3x
2− 16
343 < log7x2− 16
Câu 33 Tập nghiệm của bất phương trình log(x − 2) > 0 là
Câu 34 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 35 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 3
2. B |w|min= 2 C |w|min = 1 D |w|min = 1
2.
Câu 36 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
Câu 37 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1|
Câu 38 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax= 10
√ 2
√ 6
√ 5
√ 2
3 .
Câu 39 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Câu 40 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 41 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Trang 4Câu 42 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
2.
Câu 43 Hàm số y = (x + m)3+ (x + n)3 − x3 đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng
A. 1
−1
16.
Câu 44 Cho số phức z= (1 + i)2(1+ 2i) Số phức z có phần ảo là
Câu 45 Cho cấp số nhân (un) với u1= −1
2; u7= −32 Tìm q?
A q= ±1
Câu 46 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho
3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất
A M(3
4;
1
3
4;
1
3
4;
3
3
4;
1
2; 2).
Câu 47 Tính đạo hàm của hàm số y= 2023x
A y′ = 2023x
B y′ = x.2023x−1 C y′ = 2023x
ln 2023 D y′ = 2023x
ln x
Câu 48 Đồ thị hàm số y= x+ 1
x −2 (C) có các đường tiệm cận là
A y= 1 và x = 2 B y= −1 và x = 2 C y= 2 và x = 1 D y= 1 và x = −1
Câu 49 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = x2và đường thẳng y = mx với m , 0 Hỏi
có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20
Câu 50 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt
A −4 < m < −3 B −4 ≤ m < −3 C −4 < m ≤ −3 D m > −4.
Trang 5HẾT