1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (620)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt qg môn toán
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 - 2023
Định dạng
Số trang 5
Dung lượng 125,87 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai? A loga(x − 2)2 =[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai?

A loga(x − 2)2 = 2loga(x − 2) B loga2x= 1

2logax.

Câu 2 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =

x3+ 6x2+ mx − 2 đi qua điểm (11;1)?

Câu 3 Số nghiệm của phương trình 9x+ 5.3x

− 6= 0 là

Câu 4 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?

A Nếu 0 < x < 1 thì y < −3 B Nếux= 1 thì y = −3

C Nếu 0 < x < π thì y > 1 − 4π2 D Nếux > 2 thìy < −15.

Câu 5 Công thức nào sai?

Câu 6 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng

Câu 7 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M′đối xứng với M qua mặt phẳng Oxz?

A M′(2; −3; −1) B M′(−2; 3; 1) C M′(−2; −3; −1) D M′(2; 3; 1)

Câu 8 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng

A 2π√l2− R2 B 2πRl C π√l2− R2 D πRl.

Câu 9 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hình chiếu của

M trên mặt phẳng (Oxy)

A A(0; 2; 3) B A(1; 2; 0) C A(0; 0; 3) D A(1; 0; 3).

Câu 10 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3+ x2+ mx − 1nằm bên phải trục tung

A m < 1

3. B Không tồn tại m. C 0 < m <

1

3. D m < 0.

Câu 11 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017

A (1

Câu 12 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)

A (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 1

3. B (S ) : (x − 2)

2+ (y − 1)2+ (z + 1)2= 3

C (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 3 D (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 1

3.

Câu 13 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?

Trang 2

Câu 14 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình

vuông Tính thể tích của khối trụ

Câu 15 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã

cho có diện tích lớn nhất bằng?

A. 3

3

√ 3

2) D 3√3(m2)

Câu 16 Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai

đường thẳng BB′và AC′

A. a

2

√ 3

a√3

4 .

Câu 17 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức

z1+ z2 z1

Câu 18 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là

Câu 19 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A. 29

11

11

29

13.

Câu 20 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?

Câu 21 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

A −22016 B −21008 C −21008+ 1 D 21008

Câu 22 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗

Hỏi đâu là phương án đúng?

Câu 23 Những số nào sau đây vừa là số thực và vừa là số ảo?

A Chỉ có số 1 B 0 và 1 C Không có số nào D C.Truehỉ có số 0.

Câu 24 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 25 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?

Câu 26 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; 2; 1).

Độ dài đường cao AH của tứ diện ABCD là:

Câu 27 Lăng trụ ABC.A′B′C′ có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A′ lên (ABC)

là trung điểm của BC Góc giữa cạnh bên và mặt phẳng đáy là 600 Khoảng cách từ C′đến mp (ABB′

A′) là

A. 3a

13

a√3

3a√10

3a√13

Câu 28 Cho hình chóp S ABC có S A⊥(ABC), S A = a√3 Tam giác ABC vuông cân tại B, AC = 2a

Thể tích khối chóp S ABC là

A a3√

3√ 3

2a3√ 3

a3√ 3

Trang 3

Câu 29 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : x −3

d2 : x= ty = −tz = 2 (t ∈ R) Đường thẳng đi qua điểm A(0; 1; 1), vuông góc với d1và cắt d2 có phương trình là:

A. x −1

−3 = z −1

x

−1 = y −1

4 .

C. x

−1 = y −1

−3 = z −1

x

1 = y −1

−3 = z −1

4 .

Câu 30 Cho

4 R

−1

f(x)dx= 10 vàR4

1

f(x)dx= 8 TínhR1

−1

f(x)dx

Câu 31 Một thùng đựng nước có dạng hình trụ có chiều cao h và bán kính đáy bằng R Khi đặt thùng

nước nằm ngang như hình 1 thì khoảng cách từ trục hình trụ tới mặt nước bằng R

√ 3

2 (mặt nước thấp hơn trục của hình trụ) Khi đặt thùng nước thẳng đứng như hình 2 thì chiều cao của mực nước trong thùng là h1 Tính tỉ số h1

h

A. 2π − 3

3

2π −

√ 3

π − √3

√ 3

4 .

Câu 32 Cho a > 1, a , 0 Tìm mệnh đề đúng trong các mệnh đề sau:

A logaxcó nghĩa với ∀x ∈ R B loga1= a và logaa= 0

C loga(xy)= logax.logay D logaxn= log

a

1 n

x, (x > 0, n , 0)

Câu 33 Cho hàm số f (x)= e

1

3x

3 −2x2+3x+1

Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng(−∞; 1) và nghịch biến trên khoảng(3;+∞)

B Hàm số nghịch biến trên khoảng (−∞; 1) và (3;+∞)

C Hàm số đồng biến trên khoảng (−∞; 1) và (3;+∞)

D Hàm số nghịch biến trên khoảng(−∞; 1) và đồng biến trên khoảng(3;+∞)

Câu 34 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2

√ 2

3 .

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 1 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8

3.

Câu 35 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Câu 36 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

A |z|= 1 B |z|= 1

Câu 37 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2

z1 + 1

z2 = 1

z1+ z2 Tính giá trị biểu thức P=

z1 z2

+

z2 z1

3

√ 2

2 .

Câu 38 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Trang 4

Câu 39 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 40 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?

3

2.

Câu 41 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 42 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A. 1

2 < |z| < 2 B 3 < |z| < 5 C. 5

2 < |z| < 4 D. 3

2 < |z| < 3

Câu 43 Cho biểu thức P= (ln a + logae)2+ ln2

a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

Câu 44 Tìm tập xác định D của hàm số y=

r log23x+ 1

x −1

Câu 45 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x

2

8)= 8

A. 1

1

1

1

6.

Câu 46 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu

A. 500π

3

250π

√ 3

400π

√ 3

125π

√ 3

Câu 47 Tính đạo hàm của hàm số y= 5x +cos3x

A y′ = (1 − sin 3x)5x +cos3xln 5. B y′ = (1 + 3 sin 3x)5x +cos3xln 5.

C y′ = 5x +cos3xln 5. D y′ = (1 − 3 sin 3x)5x +cos3xln 5.

Câu 48 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600 Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)

Câu 49 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox

A m > 1 B m > 2 hoặc m < −1 C m < −2 D m > 1 hoặc m < −1

3.

Câu 50 Tính đạo hàm của hàm số y= log4√x2− 1

A y′ = √ 1

x2− 1 ln 4. B y

(x2− 1) ln 4. C y

2(x2− 1) ln 4. D y

(x2− 1)log4e.

Trang 5

HẾT

Ngày đăng: 05/04/2023, 07:37

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN