Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Công thức nào sai? A ∫ ex = ex +C B ∫ cos x = sin x +C C ∫ sin x = − cos[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Công thức nào sai?
Câu 2 Cho 0 < a , 1; 0 < x , 2 Đẳng thức nào sau đây là sai?
A logax2 = 2logax B loga(x − 2)2 = 2loga(x − 2)
2logax.
Câu 3 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng
Câu 4 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R
A m > 2e B m ≥ e−2 C m > 2 D m > e2
Câu 5 Tính I =R1
0
3
√ 7x+ 1dx
A I = 60
7 .
Câu 6 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0
Câu 7 Kết quả nào đúng?
A.R sin2xcos x= cos2x sin x + C B. R sin2xcos x= −cos2x sin x + C
C.R sin2xcos x= sin3x
Câu 8 Giá trị nhỏ nhất của hàm số y= x
x2+ 1 trên tập xác định của nó là
A min
R
y= −1
2. B minR
R
y= 1
y= −1
Câu 9 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?
2F(2x − 1)+ C
C.R f(2x − 1)dx= 2F(x) − 1 + C D.R f(2x − 1)dx = F(2x − 1) + C
Câu 10 Cho hình lăng trụ đứng ABC.A1B1C1có AB = a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi
K, I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)
A. a
√
5
a
√ 15
√
√ 5
6 .
Câu 11 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?
A ln(ab2)= ln a + (ln b)2
C ln(a
b)= ln a
2)= ln a + 2 ln b
Câu 12 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)
A (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 3 B (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2= 1
3.
C (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 1
3. D (S ) : (x − 2)
2+ (y − 1)2+ (z + 1)2= 3
Trang 2Câu 13 Cho hình lập phương ABCD.A′
B′C′D′ có cạnh bằng a Tính thể tích khối chóp D.ABC′
D′
A. a
3
a3
a3
a3
9.
Câu 14 Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′
A. a
√
2
a√3
√
√ 3
2 .
Câu 15 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1
(x+ 1)(x + 2)2; y = 0; x = 0; x = t(t > 0) Tìm lim
t→ +∞S(t).
A. 1
1
1
2.
Câu 16 Tính nguyên hàmR cos 3xdx
A −3 sin 3x+ C B 3 sin 3x+ C C −1
3sin 3x+ C
Câu 17 Số phức z= 1+ i
1 − i
!2016 + 1 − i
1+ i
!2018 bằng
Câu 18 Những số nào sau đây vừa là số thực và vừa là số ảo?
A Chỉ có số 1 B 0 và 1 C C.Truehỉ có số 0 D Không có số nào Câu 19 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 20 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)
1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là
Câu 21 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1
A |z|=
√
34
√ 34
Câu 22 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là
Câu 23 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2
A |z1+ z2|= 1 B |z1+ z2|= 5 C |z1+ z2|= √13 D |z1+ z2|= √5
Câu 24 Cho số phức z thỏa 25
1+ i +
1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?
Câu 25 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A z · z = a2− b2 B z − z = 2a C |z2|= |z|2 D z+ z = 2bi
Câu 26 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : x −3
d2 : x= ty = −tz = 2 (t ∈ R) Đường thẳng đi qua điểm A(0; 1; 1), vuông góc với d1và cắt d2có phương trình là:
A. x
−1 = y −1
−3 = z −1
x
1 = y −1
−3 = z −1
4 .
C. x −1
−3 = z −1
x
−1 = y −1
4 .
Câu 27 Cường độ một trận động đất M (richter) được cho bởi công thức M = log A − log A0, với A là biên độ rung chấn tối đa và A0 là một biên độ chuẩn (hằng số) Đầu thế kỷ 20, một trận động đất ở San
Trang 3Francisco có cường độ 8,3 độ Richter Trong cùng năm đó, trận động đất khác Nam Mỹ có biên độ mạnh
hơn gấp 4 lần Cường độ của trận động đất ở Nam Mỹ có kết quả gần đúng bằng:
Câu 28 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2+ y2+ z2− 4x − 2y+ 10z + 14 = 0 và
mặt phẳng (P) có phương trình x+ y + z − 4 = 0 Mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có
chu vi là:
Câu 29 Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân với BA= BC = a, S A = a và vuông
góc với mặt phẳng đáy Tính côsin góc giữa hai mặt phẳng (SAC) và (SBC) bằng?
A.
√
2
1
√ 2
√ 3
2 .
Câu 30 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; 2; 1).
Độ dài đường cao AH của tứ diện ABCD là:
Câu 31 Một vật chuyển động với gia tốc a(t)= −20(1 + 2t)−2 Khi t= 0 thì vận tốc của vật là 30 (m/s)
Quãng đường vật đó đi được sau 2 giây gần với giá trị nào nhất sau đây?
Câu 32 Tập xác định của hàm số y= logπ(3x− 3) là:
Câu 33 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình
A (x − 1)2+ (y + 1)2+ (z + 2)2= 6 B (x+ 1)2+ (y − 1)2+ (z − 2)2 = √6
C (x+ 1)2+ (y − 1)2+ (z − 2)2= 24 D (x+ 1)2+ (y − 1)2+ (z − 2)2 = 6
Câu 34 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và
z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|
A T = 2
√
97
√ 85
Câu 35 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Câu 36 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min= 3
2. B |w|min= 1 C |w|min = 1
2. D |w|min = 2
Câu 37 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
2.
Câu 38 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 9
4;+∞
!
4
!
4;
5 4
!
2;
9 4
!
Câu 39 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 40 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|
Trang 4Câu 41 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
√ 3
√ 2
2 .
Câu 42 Gọi z1; z2 là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 43 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng3
√ 2
2 Giả sử phương trình mặt phẳng (P) có dạng
ax+ by + cz + 2 = 0 Tính giá trị abc
Câu 44 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b
2x+ C Khi đó giá trị a + b là:
Câu 45 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng
(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α
A.
√
5
√ 15
1
√ 15
5 .
Câu 46 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x
2
8)= 8
A. 1
1
1
1
6.
Câu 47 Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N) Diện tích
toàn phầnSt pcủa hình nón (N) bằng
A St p = 2πRl + 2πR2 B St p = πRl + πR2 C St p = πRl + 2πR2 D St p = πRh + πR2
Câu 48 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A y= −x4+ 2x2+ 8 B y= −2x4+ 4x2 C y= x3− 3x2
D y= −x4+ 2x2
Câu 49 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2 nhỏ nhất Tính tổng a+ b + c
Câu 50 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600 Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)
Trang 5HẾT