1. Trang chủ
  2. » Tất cả

Đề ôn toán thpt 8 (365)

12 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thpt 8 (365)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2016
Thành phố Việt Nam
Định dạng
Số trang 12
Dung lượng 150,29 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đ[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ [a; b], ta có F0(x)= f (x)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ (a; b), ta có f0(x)= F(x)

D Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

Câu 2. Khối chóp ngũ giác có số cạnh là

Câu 3. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2

f(x3) − √ 6

3x+ 1 Tính

Z 1

0

f(x)dx

Câu 4. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m < 1

1

1

1

4.

Câu 5. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 2016

Câu 6. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 7. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Hai hình chóp tam giác.

B Một hình chóp tứ giác và một hình chóp ngũ giác.

C Một hình chóp tam giác và một hình chóp tứ giác.

D Hai hình chóp tứ giác.

Câu 8. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng d :

x+ 1

2 = y −5

2 = z

−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng d đồng thời cách A một khoảng bé nhất

A ~u = (1; 0; 2) B ~u= (2; 1; 6) C ~u= (3; 4; −4) D ~u= (2; 2; −1)

Câu 9. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 10. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

18.

Trang 2

Câu 11. [2] Cho hình lâp phương ABCD.A BC D cạnh a Khoảng cách từ C đến AC bằng

A. a

6

a√3

a

√ 6

a

√ 6

3 .

Câu 12. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 13. Cho

Z 2

1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 14. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 15. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 6 cạnh, 4 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 3 đỉnh, 3 cạnh, 3 mặt D 4 đỉnh, 8 cạnh, 4 mặt.

Câu 16. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

2016

2017

2018.

Câu 17. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 18. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 19. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số mặt của khối chóp bằng số cạnh của khối chóp.

B Số cạnh của khối chóp bằng 2n.

C Số mặt của khối chóp bằng 2n+1.

D Số đỉnh của khối chóp bằng 2n+ 1

Câu 20. Khối đa diện đều loại {4; 3} có số mặt

Câu 21. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

A |z| = √4

Câu 22. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là

Câu 23. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 24. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 25. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1

9

!x là

Câu 26. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Trang 3

Câu 27. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = 6a3

B V = 3a3√

3 C V = a3

√ 3

2 . D V = 3a3

√ 3

2 .

Câu 28. Khối đa diện đều loại {5; 3} có số cạnh

Câu 29. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2) ∪ (−1; +∞) B −2 < m < −1 C (−∞; −2] ∪ [−1; +∞) D −2 ≤ m ≤ −1.

Câu 30. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 31. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A.

3

2 e

π

√ 2

2 e

π

2e

π

3

Câu 32. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. 2a

3√

3

a3

a3

4a3√3

3 .

Câu 33 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

f(x)g(x)dx=Z f(x)dx

Z

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0

C.

Z

( f (x) − g(x))dx=

Z

f(x)dx −

Z g(x)dx D.

Z ( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx

Câu 34. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

2x3ln 10. B y

0 = 1 − 2 ln 2x

x3ln 10 . C y

0 = 1 − 2 log 2x

x3 D y0 = 1 − 4 ln 2x

2x3ln 10 .

Câu 35. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối bát diện đều B Khối 12 mặt đều C Khối tứ diện đều D Khối lập phương.

Câu 36. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. a

57

√ 57

a√57

19 .

Câu 37. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 38. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 39. [1232h] Trong không gian Oxyz, cho đường thẳng d :

x= 1 + 3t

y= 1 + 4t

z= 1

Gọi∆ là đường thẳng đi qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là

Trang 4

x= 1 + 7t

y= 1 + t

z= 1 + 5t

x= 1 + 3t

y= 1 + 4t

z= 1 − 5t

x= −1 + 2t

y= −10 + 11t

z= −6 − 5t

D.

x= −1 + 2t

y= −10 + 11t

z= 6 − 5t

Câu 40. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

5

a3

√ 15

a3

√ 15

a3

3 .

Câu 41. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 42. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 43. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 0 B M= e, m = 1 C M = e, m = 1

e. D M = 1

e, m = 0

Câu 44. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 45. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 46. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 47. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 48. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 49. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2√3 Thể tích khối nón đã cho là

A V = πa3

√ 3

3 . B V = πa3

√ 3

6 . C V = πa3

√ 6

6 . D V = πa3

√ 3

2 .

Câu 50. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. 2a

a

8a

5a

9 .

Câu 51. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Cả hai đều sai B Cả hai đều đúng C Chỉ có (I) đúng D Chỉ có (II) đúng.

Câu 52. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

Trang 5

Câu 53. Tính lim

x→3

x2− 9

x −3

Câu 54. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 70, 128 triệu đồng B 50, 7 triệu đồng C 3, 5 triệu đồng D 20, 128 triệu đồng.

Câu 55. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 56. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 57. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng

A T = e + 3 B T = 4 + 2

e. C T = e + 2

e. D T = e + 1

Câu 58. Tập xác định của hàm số f (x)= −x3+ 3x2

− 2 là

Câu 59. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞

f(x)

g(x) = a

C lim

x→ +∞[ f (x) − g(x)]= a − b D lim

x→ +∞[ f (x)+ g(x)] = a + b

Câu 60. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 61. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 3n

n2 B un = n2+ n + 1

(n+ 1)2 C un = n2− 2

5n − 3n2 D un = 1 − 2n

5n+ n2

Câu 62. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là

Câu 63. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 64. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là

Câu 65 Hình nào trong các hình sau đây không là khối đa diện?

Trang 6

Câu 66. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A BC D, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0

A A0(−3; −3; −3) B A0(−3; −3; 3) C A0(−3; 3; 3) D A0(−3; 3; 1)

Câu 67. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

Câu 68. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính

f(2)+ f (4)?

Câu 69. Tính lim

x→−∞

x+ 1 6x − 2 bằng

A. 1

1

1

3.

Câu 70. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối lập phương C Khối tứ diện đều D Khối bát diện đều.

Câu 71. [1] Tính lim1 − 2n

3n+ 1 bằng?

2

1

3.

Câu 72. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Tăng lên n lần B Không thay đổi C Tăng lên (n − 1) lần D Giảm đi n lần.

Câu 73. [3-12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 74. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là

3, 38

Câu 75. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 76. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos 2 x

lần lượt là

A 2√2 và 3 B. √2 và 3 C 2 và 2√2 D 2 và 3.

Câu 77. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

1

1

e2

Câu 78. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 79. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

A. a

3

a3

√ 3

a3

√ 3

3√ 3

Câu 80. Tính lim n −1

n2+ 2

Câu 81. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Trang 7

Câu 82. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

3

#

B. " 2

5;+∞

!

"

−2

3;+∞

!

5

#

Câu 83. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng

√ 3

a

a

2.

Câu 84. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 8a

3√

3

4a3√ 3

8a3√ 3

a3√ 3

9 .

Câu 85. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 86. [1] Phương trình log3(1 − x)= 2 có nghiệm

Câu 87. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 18

11 − 29

21 B Pmin = 2

11 − 3

3 . C Pmin = 9

11 − 19

9 . D Pmin= 9

11+ 19

Câu 88. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

√ 2

Câu 89. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

A. 1

1

Câu 90. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 91. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 10 B f0(0)= ln 10 C f0(0)= 1 D f0(0)= 1

ln 10.

Câu 92. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 93. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

A.

"

2;5

2

!

2; 3

!

Câu 94. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= − loga2 B log2a= 1

loga2. C log2a= 1

log2a. D log2a= loga2

Câu 95. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1

2 = y

1 = z+ 1

−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất

Trang 8

Câu 96. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 97. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 98. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 99. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A. a

3

2a√3

a√3

√ 3

Câu 100. Cho các dãy số (un) và (vn) và lim un = a, lim vn= +∞ thì limun

vn bằng

Câu 101. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 102. [12212d] Số nghiệm của phương trình 2x−3.3x−2

− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 103. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 104. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π

!x3−3mx 2 +m

nghịch biến trên khoảng (−∞;+∞)

Câu 105. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A a3

3√ 6

a3√ 15

a3√ 5

3 .

Câu 106. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng

Câu 107. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

√ 2

Câu 108. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 109. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Trang 9

Câu 110. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

A lim un= 1

C Dãy số unkhông có giới hạn khi n →+∞ D lim un= 0

Câu 111. Khối đa diện đều loại {3; 5} có số mặt

Câu 112. [4-1212d] Cho hai hàm số y= x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y= |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 113. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 114. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 115. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3

− z

√ 3

2 . D P= −1 − i

√ 3

Câu 116. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 117. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

1

e2

Câu 118. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của

P= xy + x + 2y + 17

Câu 119. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. 3a

a√38

3a√58

3a√38

29 .

Câu 120. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y= ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 121. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1

3x

3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng

√ 24

A m = −3, m = 4 B m= −3 C m= 4 D −3 ≤ m ≤ 4.

Câu 122. Hàm số y= x3

− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 123. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A Cả ba câu trên đều sai.

B G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

Trang 10

C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.

D F(x)= G(x) trên khoảng (a; b)

Câu 124. [2] Phương trình log4(x+ 1)2+ 2 = log√

2

4 − x+ log8(4+ x)3có tất cả bao nhiêu nghiệm?

Câu 125. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. a

2

a

2a

a

4.

Câu 126. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Hai khối chóp tứ giác.

B Hai khối chóp tam giác.

C Một khối chóp tam giác, một khối chóp tứ giác.

D Một khối chóp tam giác, một khối chóp ngữ giác.

Câu 127. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→a + f(x)= lim

x→af(x)= f (a)

C lim

x→a + f(x)= lim

x→a − f(x)= +∞ D f (x) có giới hạn hữu hạn khi x → a.

Câu 128. Cho hàm số y= x3

− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 129. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

2

a3√ 6

a3√ 6

a3√ 6

36 .

Câu 130. Tính lim

x→2

x+ 2

x bằng?

HẾT

Ngày đăng: 02/04/2023, 21:48

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN