TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là A (1;−[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 2. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m
mtan x+ 1 nghịch biến trên khoảng
0;π
4
Câu 3 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
B Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
C Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
D Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
Câu 4. [2-c] Cho hàm số f (x)= 9x
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
Câu 5. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 6. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
√
√
Câu 7. Cho
Z 1
0
xe2xdx= ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
1
4.
Câu 8. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
Câu 9. [2] Đạo hàm của hàm số y = x ln x là
A y0 = 1 − ln x B y0 = ln x − 1 C y0 = 1 + ln x D y0 = x + ln x
Câu 10. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A. a
√
57
2a√57
a√57
√ 57
Câu 11. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
√
√ 5
Câu 12. Tính lim
x→1
x3− 1
x −1
Trang 2Câu 13. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối tứ diện đều B Khối bát diện đều C Khối 12 mặt đều D Khối 20 mặt đều.
Câu 14. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 15 Trong các khẳng định sau, khẳng định nào sai?
A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
C Cả ba đáp án trên.
D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
Câu 16. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
A Dãy số unkhông có giới hạn khi n →+∞ B lim un= 1
C lim un= 1
Câu 17. Tính lim
x→2
x+ 2
x bằng?
Câu 18. [1] Giá trị của biểu thức log √31
10 bằng
1
3.
Câu 19. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
Câu 20. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 21. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
Câu 22. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√ 2
a3√ 2
a3√ 2
2 .
Câu 23. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 24. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 25. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. a
3√
3
8a3√3
8a3√3
4a3√3
9 .
Câu 26. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Trang 3Câu 27. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 28. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
13
5
23
100.
Câu 29 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx
!0
Z
f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C
C.
Z
f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C D. Z k f(x)dx= kZ f(x)dx, k là hằng số
Câu 30. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3√15
a3√5
a3
3 .
Câu 31. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
2 .
Câu 32. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
A 3 − 4
√
√ 2
Câu 33. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 34. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
Câu 35. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là
Câu 36. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
C Phần thực là −1, phần ảo là −4 D Phần thực là 4, phần ảo là 1.
Câu 37. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= 1
loga2. B log2a= loga2 C log2a= 1
log2a. D log2a= − loga2
Câu 38. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Một khối chóp tam giác, một khối chóp ngữ giác.
B Hai khối chóp tứ giác.
C Hai khối chóp tam giác.
D Một khối chóp tam giác, một khối chóp tứ giác.
Câu 39. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 40. [4-1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Trang 4Câu 41. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
A f0(0)= ln 10 B f0(0)= 1
ln 10. C f
0 (0)= 1 D f0(0)= 10
Câu 42. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 43. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
3
9
4.
Câu 44. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A.
√
√ 13
√
√ 13
Câu 45. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 46. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
A 3
√
Câu 47. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. a
√
38
3a√58
3a√38
3a
29.
Câu 48. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 49. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
a3√2
3√
3√ 3
4 .
Câu 50. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0
là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
Câu 51. Khối chóp ngũ giác có số cạnh là
Câu 52. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 53. Khối đa diện đều loại {3; 4} có số cạnh
Câu 54. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A a
√
√ 6
a√6
a√6
2 .
Trang 5Câu 55. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. 2a
√
57
√
√ 57
a√57
19 .
Câu 56. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2
2 = y −3
3 = z+ 4
−5 và d
0 : x+ 1
3 = y −4
−2 = z −4
−1
A. x −2
2 = y −2
3 = z −3
x −2
2 = y+ 2
2 = z −3
2 .
C. x
2 = y −2
3 = z −3
x
1 = y
1 = z −1
1 .
Câu 57. [1232h] Trong không gian Oxyz, cho đường thẳng d :
x= 1 + 3t
y= 1 + 4t
z= 1
Gọi∆ là đường thẳng đi qua
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là
A.
x= 1 + 7t
y= 1 + t
z= 1 + 5t
x= 1 + 3t
y= 1 + 4t
z= 1 − 5t
x= −1 + 2t
y= −10 + 11t
z= 6 − 5t
D.
x= −1 + 2t
y= −10 + 11t
z= −6 − 5t
Câu 58. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 59. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 60. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e + 1 B T = 4 + 2
e. C T = e + 3 D T = e + 2
e.
Câu 61. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|
A.
√
√ 17
√
√ 5
Câu 62. Tính lim
x→ +∞
x −2
x+ 3
3.
Câu 63. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
4035
2017
Câu 64. Cho
Z 2
1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 65. Cho hàm số y= x3
− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Trang 6Câu 66. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. 2a
3√
3
a3
a3
4a3√ 3
3 .
Câu 67. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = 120.(1, 12)3
(1, 12)3− 1 triệu. B m = 100.1, 03
3 triệu.
C m = (1, 01)3
(1, 01)3− 1 triệu. D m = 100.(1, 01)3
3 triệu.
Câu 68. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 69. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 70. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 2x ln x B y0 = 2x ln 2 C y0 = 1
0 = 1
2x ln x.
Câu 71. Hàm số y= x + 1
x có giá trị cực đại là
Câu 72. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
Câu 73. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 74 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
C Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
Câu 75. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
√
Câu 76. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7
Câu 77. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Trang 7Câu 78. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
Câu 79. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2
)?
Câu 80. Khối đa diện đều loại {5; 3} có số cạnh
Câu 81. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 82. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
Câu 83. Khối đa diện đều loại {4; 3} có số cạnh
Câu 84 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
B.
Z
[ f (x) − g(x)]dx=
Z
f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
C.
Z
[ f (x)+ g(x)]dx =
Z
f(x)dx+
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
D.
Z
k f(x)dx= k
Z
f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
Câu 85 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
B Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
C F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
D.
Z
u0(x)
u(x)dx= log |u(x)| + C
Câu 86. [2] Tổng các nghiệm của phương trình 3x2−3x +8 = 92x−1là
Câu 87. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
3√ 3
a3
√ 3
2a3√ 3
3 .
Câu 88. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2
f(x3)−√ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 89. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 90. Khối lập phương thuộc loại
Câu 91. [1] Tập xác định của hàm số y= 2x−1là
A. D = R B. D = (0; +∞) C. D = R \ {1} D. D = R \ {0}
Trang 8Câu 92. Tính lim n −1
n2+ 2
Câu 93. Cho hàm số y= x3
− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng −∞;1
3
! B Hàm số nghịch biến trên khoảng (1;+∞)
C Hàm số nghịch biến trên khoảng 1
3; 1
!
3; 1
!
Câu 94. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 95. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối tứ diện đều B Khối 12 mặt đều C Khối lập phương D Khối bát diện đều.
Câu 96. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Năm hình chóp tam giác đều, không có tứ diện đều.
B Năm tứ diện đều.
C Bốn tứ diện đều và một hình chóp tam giác đều.
D Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 97. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là
A. 8
3; 0; 0
!
3; 0; 0
!
3; 0; 0
!
Câu 98. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 99. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3
√ 3
a3
√ 6
a3
√ 6
48 .
Câu 100. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?
Câu 101. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3√3
a3√2
a3√6
48 .
Câu 102. Thể tích của khối lập phương có cạnh bằng a
√ 2
A. 2a
3√
2
3√
2
Câu 103. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
B G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
C F(x)= G(x) trên khoảng (a; b)
D Cả ba câu trên đều sai.
Câu 104 Hình nào trong các hình sau đây không là khối đa diện?
Trang 9Câu 105. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 106. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là
Câu 107. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
2
√
a2+ b2 C. ab
a2+ b2 D. √ 1
a2+ b2
Câu 108. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 109. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 110. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Câu 111. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 112. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là
Câu 113. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối lập phương B Khối bát diện đều C Khối 12 mặt đều D Khối tứ diện đều.
Câu 114. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 115. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
2
e3
Câu 116. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên khoảng (−2; 1).
B Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
C Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
D Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
Câu 117. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 118. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 119. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
A. a
3
3
a3
12.
Câu 120. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng số mặt của khối chóp.
B Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Trang 10C Số cạnh của khối chóp bằng số mặt của khối chóp.
D Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 121. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc
60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. 2a
3√
3
5a3
√ 3
4a3
√ 3
a3
√ 3
2 .
Câu 122. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s) Tính quãng đường chất điểm đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 123. [2] Phương trình logx4 log2 5 − 12x
12x − 8
!
= 2 có bao nhiêu nghiệm thực?
Câu 124. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
Câu 125. [3] Cho hàm số f (x)= 4x
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 2017 B T = 2016 C T = 1008 D T = 2016
2017.
Câu 126. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?
4 x
C y = logaxtrong đó a= √3 − 2 D y = log√
2x
Câu 127. Hàm số nào sau đây không có cực trị
A y = x4
− 2x+ 1 B y= x3
− 3x C y= x −2
2x+ 1. D y= x +
1
x.
Câu 128. [1] Giá trị của biểu thức 9log3 12bằng
Câu 129. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là
Câu 130. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos 2 x
lần lượt là
HẾT