1. Trang chủ
  2. » Tất cả

Đề ôn toán thpt 7 (218)

12 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thpt 7 (218)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 151,12 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là A 6[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là

Câu 2. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

A. 7

-2

3.

Câu 3. Tính lim

x→2

x+ 2

x bằng?

Câu 4. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x)g(x)]= ab B lim

x→ +∞

f(x) g(x) = a

b.

C lim

x→ +∞[ f (x) − g(x)]= a − b D lim

x→ +∞[ f (x)+ g(x)] = a + b

Câu 5. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. 2a

3√

6

a3

√ 3

a3

√ 6

a3

√ 3

2 .

Câu 6. Khối đa diện đều loại {5; 3} có số mặt

Câu 7. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD= 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

3√

2

a3√3

a3√2

3√ 3

Câu 8. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A − 23

13

5

9

25.

Câu 9. Hàm số y= x + 1

x có giá trị cực đại là

Câu 10. [1] Giá trị của biểu thức 9log3 12bằng

Câu 11. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

sai

D Câu (I) sai.

Trang 2

Câu 12. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 13 Mệnh đề nào sau đây sai?

A F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

B Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

C Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

D.

Z

f(x)dx

!0

= f (x)

Câu 14. Tính lim 2n

2− 1 3n6+ n4

Câu 15. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 16. Khối đa diện đều loại {3; 4} có số cạnh

Câu 17. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 18. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

A. a

3√

3

3

a3

√ 3

3 .

Câu 19. [1] Biết log6 √a= 2 thì log6abằng

Câu 20. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

A Phần thực là −3, phần ảo là 4 B Phần thực là −3, phần ảo là −4.

C Phần thực là 3, phần ảo là −4 D Phần thực là 3, phần ảo là 4.

Câu 21. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A. a

3

√ 3

2a√3

2 .

Câu 22. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 23. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

1

Câu 24. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3)−√ 6

3x+ 1 Tính

Z 1

0

f(x)dx

Câu 25. [1] Đạo hàm của hàm số y = 2x

A y0 = 2x ln 2 B y0 = 1

0 = 1

2x ln x. D y

0 = 2x ln x

Trang 3

Câu 26. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là

A. 2

9

1

1

10.

Câu 27. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

Câu 28. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Câu 29. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

Câu 30. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 31. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 32. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

A. 1

1 2e3

Câu 33 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

B Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

C Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

D Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

Câu 34. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

A |z| = 2√5 B |z|= √4

Câu 35. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng

A. a

3

a

a

Câu 36. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Bốn tứ diện đều và một hình chóp tam giác đều.

B Năm hình chóp tam giác đều, không có tứ diện đều.

C Năm tứ diện đều.

D Một tứ diện đều và bốn hình chóp tam giác đều.

Câu 37. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 38. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

A. 1

1

2.

Trang 4

Câu 39. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 3n

n2 B un = n2− 2

5n − 3n2 C un = 1 − 2n

5n+ n2 D un = n2+ n + 1

(n+ 1)2

Câu 40. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Chỉ có (II) đúng B Chỉ có (I) đúng C Cả hai câu trên đúng D Cả hai câu trên sai.

Câu 41 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aαbα= (ab)α

B aαβ = (aα

C aα+β = aα.aβ

α

aβ = aα

Câu 42. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 43. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 44. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 45. Tính lim

x→−∞

x+ 1 6x − 2 bằng

1

1

2.

Câu 46. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 47. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 3, 5 triệu đồng B 50, 7 triệu đồng C 70, 128 triệu đồng D 20, 128 triệu đồng.

Câu 48. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 49. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

√ 6

2 .

Câu 50. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Hai khối chóp tứ giác.

B Hai khối chóp tam giác.

C Một khối chóp tam giác, một khối chóp ngữ giác.

D Một khối chóp tam giác, một khối chóp tứ giác.

Trang 5

Câu 51. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 52. Bát diện đều thuộc loại

Câu 53. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A 2a

√ 2

a√2

√ 2

Câu 54. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng

d: x+ 1

2 = y −5

2 = z

−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng

dđồng thời cách A một khoảng bé nhất

A ~u = (2; 2; −1) B ~u= (3; 4; −4) C ~u= (2; 1; 6) D ~u= (1; 0; 2)

Câu 55. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

B Hàm số nghịch biến trên khoảng (−2; 1).

C Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

D Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

Câu 56 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

B Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

C Cả ba đáp án trên.

D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

Câu 57. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 58. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 2a

3√

3

4a3√3

2a3

4a3

3 .

Câu 59. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 60. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (−∞; 0) B Hàm số đồng biến trên khoảng (1; 2).

C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số nghịch biến trên khoảng (0; 1).

Câu 61 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

B Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

Câu 62. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

Trang 6

A. 3a

38

3a

a√38

3a√58

29 .

Câu 63. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 64. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 65. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 66. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 67. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là

Câu 68. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 69 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

Câu 70. Khối đa diện đều loại {3; 3} có số mặt

Câu 71. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = 1

e, m = 0 B M= e, m = 1 C M = e, m = 1

e. D M = e, m = 0

Câu 72. [2] Tổng các nghiệm của phương trình 3x−1.2x 2

= 8.4x−2là

Câu 73. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1+ 2e

4e+ 2. B m=

1+ 2e

4 − 2e. C m= 1 − 2e

4e+ 2. D m=

1 − 2e

4 − 2e.

Câu 74. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 75. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

3√ 3

a3

√ 3

2a3

√ 3

3 .

Câu 76. Dãy số nào sau đây có giới hạn khác 0?

A. sin n

1

n+ 1

1

n.

Câu 77. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A. −∞;2

3

#

B. " 2

5;+∞

!

5

#

"

−2

3;+∞

!

Trang 7

Câu 78. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 79. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 80. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 81. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

A m < 0 ∨ m > 4 B m < 0 ∨ m= 4 C m ≤ 0 D m < 0.

Câu 82. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 83. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 84. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 85. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Câu 86. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

A 1+ 2 sin 2x B −1+ sin x cos x C −1+ 2 sin 2x D 1 − sin 2x.

Câu 87. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 88. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là

Câu 89. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Câu 90. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 27 lần B Tăng gấp 18 lần C Tăng gấp 9 lần D Tăng gấp 3 lần.

Câu 91. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 92 Phát biểu nào sau đây là sai?

A lim un= c (Với un = c là hằng số) B lim qn= 1 với |q| > 1

C lim √1

nk = 0 với k > 1

Câu 93. Tính lim

x→ +∞

x −2

x+ 3

3.

Trang 8

Câu 94. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A BC D, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0

A A0(−3; −3; −3) B A0(−3; −3; 3) C A0(−3; 3; 3) D A0(−3; 3; 1)

Câu 95. Cho hàm số y= 3 sin x − 4 sin3

x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



Câu 96. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

3S h. D V = 3S h

Câu 97. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

Câu 98. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là

A Hai đường phân giác y= x và y = −x của các góc tọa độ

B Đường phân giác góc phần tư thứ nhất.

C Trục thực.

D Trục ảo.

Câu 99. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

A. 2

Câu 100. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. 8a

2a

5a

a

9.

Câu 101. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 102. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

"

2;5 2

! C. " 5

2; 3

!

Câu 103. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

Câu 104. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 105. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A. 12

17

Câu 106. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

√ 2

2 e

π

2e

π

√ 3

2 e

π

6

Trang 9

Câu 107. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

A 8

Câu 108. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 3ac

3b+ 2ac

3b+ 2ac

3b+ 3ac

c+ 2 .

Câu 109. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 110. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

2.

Câu 111. Tính lim

x→5

x2− 12x+ 35

25 − 5x

A. 2

5.

Câu 112. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của

P= xy + x + 2y + 17

Câu 113. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2

a2+ b2 C. ab

a2+ b2 D. √ ab

a2+ b2

Câu 114. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 115. [3-12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 116. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m ≤ 1

1

1

1

4.

Câu 117. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 118. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

6

a3√ 3

a3√ 6

a3√ 6

24 .

Câu 119. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3√

3

a3

√ 3

a3

3

Câu 120. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc

60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

Trang 10

A. 2a

3√

3

4a3√3

5a3√3

a3√3

2 .

Câu 121. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối bát diện đều B Khối 12 mặt đều C Khối tứ diện đều D Khối lập phương.

Câu 122. [4-1212d] Cho hai hàm số y= x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y= |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 123. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

a2+ b2 B. √ ab

2

a2+ b2 D. ab

a2+ b2

Câu 124. Khối chóp ngũ giác có số cạnh là

Câu 125. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?

Câu 126. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 127. Khối đa diện đều loại {4; 3} có số cạnh

Câu 128. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng

A. 1079

23

1637

1728

4913.

Câu 129. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1

9

!x là

Câu 130. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là

HẾT

Ngày đăng: 02/04/2023, 21:07

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN