TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Biểu diễn hình học của số phức z = 4 + 8i là điểm nào tron[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 2. [2] Đạo hàm của hàm số y = x ln x là
A y0 = ln x − 1 B y0 = 1 − ln x C y0 = x + ln x D y0 = 1 + ln x
Câu 3. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 5 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 6 cạnh, 6 mặt.
Câu 4. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 5. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 6. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính
f(2)+ f (4)?
Câu 7. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 8. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
Câu 9. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 10. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là
Câu 11 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 B.
Z
f(x)g(x)dx=Z f(x)dx
Z g(x)dx
C.
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx D.
Z ( f (x) − g(x))dx=
Z
f(x)dx −
Z g(x)dx
Câu 12. [2] Tổng các nghiệm của phương trình 3x−1.2x 2
= 8.4x−2là
Câu 13. Dãy số nào sau đây có giới hạn là 0?
A. −5
3
!n
3
!n
3
!n
e
!n
Câu 14. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 15. [1-c] Giá trị biểu thức log236 − log2144 bằng
Trang 2Câu 16. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 4 ln 2x
2x3ln 10 . B y
0 = 1 2x3ln 10. C y
0 = 1 − 2 log 2x
x3 D y0 = 1 − 2 ln 2x
x3ln 10 .
Câu 17. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. 4a
3√
3
a3√3
8a3√3
8a3√3
9 .
Câu 18. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0
A A0(−3; 3; 1) B A0(−3; −3; −3) C A0(−3; 3; 3) D A0(−3; −3; 3)
Câu 19. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
Câu 20. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2
f(x3)−√ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 21. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 22. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3
− z
A P= −1 − i
√ 3
√ 3
2 . D P= 2i
Câu 23. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 24. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m
mtan x+ 1 nghịch biến trên khoảng
0;π
4
Câu 25. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
A. 1
1
Câu 26. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 27. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?
A y = log√
2x B y = logaxtrong đó a= √3 − 2
C y = logπ
Câu 28. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A (−∞; −2) ∪ (−1; +∞) B −2 < m < −1 C −2 ≤ m ≤ −1 D (−∞; −2] ∪ [−1;+∞)
Câu 29. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. 11a
2
a2√7
a2√5
a2√2
4 .
Trang 3Câu 30. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π
!x −3mx +m
nghịch biến trên khoảng (−∞;+∞)
Câu 31. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Câu 32. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 33. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
2√a2+ b2 C. √ 1
a2+ b2 D. ab
a2+ b2
Câu 34. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 35. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
2.
Câu 36. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 37. [1232h] Trong không gian Oxyz, cho đường thẳng d :
x= 1 + 3t
y= 1 + 4t
z= 1
Gọi∆ là đường thẳng đi qua
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là
A.
x= 1 + 3t
y= 1 + 4t
z= 1 − 5t
x= −1 + 2t
y= −10 + 11t
z= 6 − 5t
C.
x= −1 + 2t
y= −10 + 11t
z= −6 − 5t
D.
x= 1 + 7t
y= 1 + t
z= 1 + 5t
Câu 38. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2
− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 39 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
B Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
C Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
D Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
Câu 40. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 41. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Trang 4Câu 42. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
Câu 43 Phát biểu nào sau đây là sai?
A lim 1
nk = 0 với k > 1 B lim √1
n = 0
C lim qn= 1 với |q| > 1 D lim un= c (Với un = c là hằng số)
Câu 44. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 45 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
B.
Z
[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R
C.
Z
[ f (x) − g(x)]dx=
Z
f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
D.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
Câu 46. [1] Phương trình log3(1 − x)= 2 có nghiệm
Câu 47. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 48. Thể tích của khối lập phương có cạnh bằng a
√ 2
3√ 2
√ 2
Câu 49. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
A −1
1
e.
Câu 50. Khối đa diện đều loại {3; 5} có số cạnh
Câu 51. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 52. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. 2a
√
3
a
√ 3
√
√ 3
2 .
Câu 53. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Câu 54. [1] Tập xác định của hàm số y= 4x2+x−2là
A. D = R \ {1; 2} B. D = R C. D = [2; 1] D. D = (−2; 1)
Câu 55. Khối đa diện đều loại {5; 3} có số cạnh
Trang 5Câu 56. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 57. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey
− 1 D xy0 = −ey+ 1
Câu 58. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = −ey
− 1
Câu 59. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
3
√ 3
√ 3
12.
Câu 60. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga
3
√
abằng
A −1
1
Câu 61. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 62. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 63. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là
√
2 − 1, phần ảo là −
√
√
2, phần ảo là −
√ 3
C Phần thực là
√
2 − 1, phần ảo là
√
√
2, phần ảo là 1 −
√ 3
Câu 64. Giá trị cực đại của hàm số y = x3− 3x+ 4 là
Câu 65. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 66. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 67. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 68. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Câu 69. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1
2 = y
1 = z+ 1
−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất
Câu 70. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 4 đỉnh, 8 cạnh, 4 mặt B 3 đỉnh, 3 cạnh, 3 mặt C 4 đỉnh, 6 cạnh, 4 mặt D 6 đỉnh, 6 cạnh, 4 mặt.
Câu 71. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A 2
√
√ 13
√
√ 26
Trang 6Câu 72. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 73. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = R B. D = (−∞; 1) C. D = R \ {1} D. D = (1; +∞)
Câu 74. Tính lim
x→5
x2− 12x+ 35
25 − 5x
2
5.
Câu 75. Tính lim n −1
n2+ 2
Câu 76. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A.
√
3
2 e
π
√ 2
2 e
π
2e
π
3
Câu 77. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
3√ 6
a3
√ 5
a3
√ 15
3 .
Câu 78. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 79. [1] Giá trị của biểu thức log √31
10 bằng
1
3.
Câu 80. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là
Câu 81. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
2
a3√6
a3√6
a3√6
18 .
Câu 82. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 83. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là
A a3
√
3√ 3
a3
a3√3
3 .
Câu 84. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 85. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
Câu 86. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A a
√
√ 6
√
√ 3
Trang 7Câu 87. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1+ 2e
4 − 2e. B m= 1+ 2e
4e+ 2. C m=
1 − 2e
4 − 2e. D m= 1 − 2e
4e+ 2.
Câu 88. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
A. 2a
3
4a3√ 3
2a3√ 3
4a3
3 .
Câu 89. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Chỉ có (I) đúng B Chỉ có (II) đúng C Cả hai đều đúng D Cả hai đều sai.
Câu 90. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
√
3
a
a
3.
Câu 91. [3-12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 92. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 18
√
11 − 29
21 B Pmin = 2
√
11 − 3
3 . C Pmin = 9
√
11 − 19
9 . D Pmin= 9
√
11+ 19
Câu 93. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 94 Hình nào trong các hình sau đây không là khối đa diện?
Câu 95. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 96. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. 1
2;+∞
!
2
!
2;+∞
!
2
!
Câu 97. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞
f(x)
g(x) = a
C lim
x→ +∞[ f (x)g(x)]= ab D lim
x→ +∞[ f (x) − g(x)]= a − b
Câu 98. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 99. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
5
a3
a3√15
a3√15
5 .
Trang 8Câu 100. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
Câu 101. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?
Câu 102. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 103. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Một hình chóp tứ giác và một hình chóp ngũ giác.
B Hai hình chóp tứ giác.
C Một hình chóp tam giác và một hình chóp tứ giác.
D Hai hình chóp tam giác.
Câu 104. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3
√ 3
a3
√ 3
a3
√ 3
12 .
Câu 105. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 106. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 107 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
Câu 108. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
Câu 109. [2] Phương trình log4(x+ 1)2+ 2 = log√
2
√
4 − x+ log8(4+ x)3có tất cả bao nhiêu nghiệm?
Câu 110. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối bát diện đều B Khối 12 mặt đều C Khối 20 mặt đều D Khối tứ diện đều.
Câu 111. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
A 1+ 2 sin 2x B 1 − sin 2x C −1+ sin x cos x D −1+ 2 sin 2x
Câu 112. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
x= t
y= −1
z= −t
và hai mặt phẳng (P), (Q)
lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)
A (x+ 3)2+ (y + 1)2+ (z − 3)2= 9
2+ (y − 1)2+ (z − 3)2= 9
4.
C (x − 3)2+ (y + 1)2+ (z + 3)2= 9
4. D (x+ 3)2+ (y + 1)2+ (z + 3)2= 9
4.
Câu 113. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b, AA0 = c Khoảng cách từ điểm
Ađến đường thẳng BD0bằng
√
b2+ c2
√
a2+ b2+ c2 B. b
√
a2+ c2
√
a2+ b2+ c2 C. abc
√
b2+ c2
√
a2+ b2+ c2 D. c
√
a2+ b2
√
a2+ b2+ c2
Trang 9Câu 114. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là
A. 2
1
1
9
10.
Câu 115. Tứ diện đều thuộc loại
Câu 116. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 117. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A. a
√
57
2a√57
a√57
√ 57
Câu 118. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?
Câu 119. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 120. Xác định phần ảo của số phức z= (√2+ 3i)2
Câu 121. Tìm giới hạn lim2n+ 1
n+ 1
Câu 122. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
√
Câu 123. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 124. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 125. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 126. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là
3√ 3
3
Câu 127. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 128. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. a
√
57
√
√ 57
2a
√ 57
19 .
Câu 129. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
A. 2
Trang 10Câu 130. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. 2a
3√
3
a3√3
a3√3
3√ 3
HẾT