TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 2. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
A lim un= 1
C Dãy số unkhông có giới hạn khi n →+∞ D lim un= 0
Câu 3. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
1
3.
Câu 4. Tính limcos n+ sin n
n2+ 1
Câu 5. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 6 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
C Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
Câu 7. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 8. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|
A. 12
√
17
√
√
√ 68
Câu 9. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 10. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e +2
e. B T = 4 + 2
e. C T = e + 1 D T = e + 3
Câu 11. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính
f(2)+ f (4)?
Câu 12. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Trang 2Câu 13. Cho hàm số y= −x3+ 3x2
− 4 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng (0; 2) B Hàm số nghịch biến trên khoảng (−∞; 2).
C Hàm số nghịch biến trên khoảng (0; 2) D Hàm số đồng biến trên khoảng (0;+∞)
Câu 14. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 15. [1] Tập xác định của hàm số y= log3(2x+ 1) là
2
!
2
!
2;+∞
!
2;+∞
!
Câu 16. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 0 B M= e, m = 1 C M = e, m = 1
e. D M = 1
e, m = 0
Câu 17. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
3√ 2
a3
√ 3
a3
√ 3
2 .
Câu 18. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là
Câu 19. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là
Câu 20. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
Câu 21. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
3√ 3
a3√ 3
a3
3 .
Câu 22. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 23. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?
Câu 24. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 25. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 26. [1] Giá trị của biểu thức 9log3 12bằng
Câu 27. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey
Câu 28. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Trang 3Câu 29. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 30. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
18.
Câu 31. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3
√ 3
2a3√ 3
3√ 3
Câu 32. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?
A y = log√
2x B y = logaxtrong đó a= √3 − 2
4 x
Câu 33. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
Câu 34. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 35. Khối chóp ngũ giác có số cạnh là
Câu 36. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 37. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 38. Giá trị cực đại của hàm số y = x3− 3x+ 4 là
Câu 39. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?
Câu 40. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
√ 3
2 . C V = a3
√ 3
2 . D V = 3a3√
3
Câu 41. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
Câu 42. [1] Phương trình log3(1 − x)= 2 có nghiệm
Câu 43. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng
A. 23
1728
1079
1637
4913.
Trang 4Câu 44. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 45. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 46. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Một khối chóp tam giác, một khối chóp ngữ giác.
B Một khối chóp tam giác, một khối chóp tứ giác.
C Hai khối chóp tứ giác.
D Hai khối chóp tam giác.
Câu 47. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 48. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?
9
Câu 49. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A a
√
√ 3
a√3
a√3
2 .
Câu 50. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
A. 3
2.
Câu 51. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3
√ 6
a3
√ 3
a3
√ 2
16 .
Câu 52. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 53. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1+ 2e
4e+ 2. B m=
1+ 2e
4 − 2e. C m= 1 − 2e
4 − 2e. D m= 1 − 2e
4e+ 2.
Câu 54. [1] Đạo hàm của làm số y = log x là
A y0 = 1
xln 10. B y
0 = 1
0 = ln 10
1
10 ln x.
Câu 55. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 56. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Cả hai đều sai B Chỉ có (II) đúng C Chỉ có (I) đúng D Cả hai đều đúng.
Trang 5Câu 57. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 58. Khối đa diện đều loại {3; 5} có số cạnh
Câu 59. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 60. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?
Câu 61. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 62. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 4 ln 2x
2x3ln 10 . B y
0 = 1 2x3ln 10. C y
0 = 1 − 2 ln 2x
x3ln 10 . D y
0 = 1 − 2 log 2x
x3
Câu 63. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
√
a2+ c2
√
a2+ b2+ c2 B. abc
√
b2+ c2
√
a2+ b2+ c2 C. a
√
b2+ c2
√
a2+ b2+ c2 D. c
√
a2+ b2
√
a2+ b2+ c2
Câu 64. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 4 đỉnh, 8 cạnh, 4 mặt B 6 đỉnh, 6 cạnh, 4 mặt C 4 đỉnh, 6 cạnh, 4 mặt D 3 đỉnh, 3 cạnh, 3 mặt.
Câu 65. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số mặt của khối chóp bằng số cạnh của khối chóp.
B Số cạnh của khối chóp bằng 2n.
C Số mặt của khối chóp bằng 2n+1.
D Số đỉnh của khối chóp bằng 2n+ 1
Câu 66. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 20, 128 triệu đồng B 50, 7 triệu đồng C 3, 5 triệu đồng D 70, 128 triệu đồng.
Câu 67. Khối đa diện đều loại {4; 3} có số cạnh
Câu 68 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
B.
Z
k f(x)dx= k
Z
f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
C.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
D.
Z
[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 69. Khối đa diện đều loại {3; 3} có số cạnh
Trang 6Câu 70. [4] Cho lăng trụ ABC.A BC có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A. 14
√
3
√
√
√ 3
3 .
Câu 71. [1] Tính lim1 − 2n
3n+ 1 bằng?
A. 2
2
1
3.
Câu 72. Cho
Z 2
1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 73. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 74. [2] Tổng các nghiệm của phương trình 3x−1.2x 2
= 8.4x−2là
Câu 75. Tính lim
x→1
x3− 1
x −1
Câu 76. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3
√ 3
a3
√ 3
a3
√ 3
24 .
Câu 77. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3
a3√3
a3√3
8 .
Câu 78. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0
A A0(−3; 3; 3) B A0(−3; −3; 3) C A0(−3; −3; −3) D A0(−3; 3; 1)
Câu 79. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối tứ diện đều C Khối 20 mặt đều D Khối bát diện đều.
Câu 80. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 81. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 82. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 83. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
Trang 7Câu 84. Tính lim
x→−∞
x+ 1 6x − 2 bằng
1
1
2.
Câu 85. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 86. Tứ diện đều thuộc loại
Câu 87. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7
Câu 88. [3-12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 89. [3] Cho hàm số f (x)= 4x
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 2016
Câu 90. Dãy số nào sau đây có giới hạn là 0?
A. 5
3
!n
3
!n
e
!n
3
!n
Câu 91. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A (−∞; −2) ∪ (−1; +∞) B −2 ≤ m ≤ −1 C (−∞; −2] ∪ [−1; +∞) D −2 < m < −1.
Câu 92. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 93. [1] Đạo hàm của hàm số y = 2xlà
A y0 = 1
2x ln x. B y0 = 2x ln 2 C y0 = 2x ln x D y0 = 1
ln 2.
Câu 94. Khối đa diện đều loại {3; 4} có số cạnh
Câu 95. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e2− 2; m = e−2+ 2 B M = e−2+ 1; m = 1
C M = e−2
− 2; m= 1 D M = e−2+ 2; m = 1
Câu 96. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
Câu 97. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là
Câu 98 Phát biểu nào sau đây là sai?
A lim √1
C lim 1
nk = 0 với k > 1 D lim un= c (Với un = c là hằng số)
Câu 99. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3
3√ 3
a3√3
9 .
Trang 8Câu 100. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+ log23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 101. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?
Câu 102. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
A. 2
1
e2
Câu 103. Xác định phần ảo của số phức z= (√2+ 3i)2
√
√
Câu 104. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
A.
"
2;5
2
!
B. " 5
2; 3
!
Câu 105. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (−∞; 0) B Hàm số nghịch biến trên khoảng (1;+∞)
C Hàm số đồng biến trên khoảng (1; 2) D Hàm số nghịch biến trên khoảng (0; 1).
Câu 106. Dãy số nào có giới hạn bằng 0?
A un= n3− 3n
n+ 1 . B un = n2− 4n C un = 6
5
!n D un = −2
3
!n
Câu 107. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 108. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m < 1
1
1
1
4.
Câu 109. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3
a3
√ 15
a3
√ 15
a3
√ 5
25 .
Câu 110. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 2ac
3b+ 3ac
3b+ 2ac
3b+ 3ac
c+ 1 .
Câu 111. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b) B lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b) D lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b)
Câu 112. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 113. Tính lim
x→2
x+ 2
x bằng?
Trang 9Câu 114. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2
2 = y −3
3 = z+ 4
−5 và d
0 : x+ 1
3 = y −4
−2 = z −4
−1
A. x −2
2 = y+ 2
2 = z −3
x
2 = y −2
3 = z −3
−1 .
C. x
1 = y
1 = z −1
x −2
2 = y −2
3 = z −3
4 .
Câu 115. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
Câu 116. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 117. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = (1, 01)3
(1, 01)3− 1 triệu. B m = 100.(1, 01)3
3 triệu.
C m = 100.1, 03
(1, 12)3− 1 triệu.
Câu 118. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x+3trên đoạn [0; 2] là
Câu 119. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 120. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
2
√
a2+ b2 C. √ ab
a2+ b2 D. ab
a2+ b2
Câu 121. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
1
Câu 122. [1] Giá trị của biểu thức log √31
10 bằng
1
Câu 123. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
A 0 ≤ m ≤ 3
9
3
Câu 124. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = ey
− 1 D xy0 = ey+ 1
Câu 125. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A a
√
√ 57
2a√57
a√57
19 .
Trang 10Câu 126. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = 1
2S h. D V = S h
Câu 127 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A. a
α
aβ = aα B aα+β= aα.aβ C aαβ = (aα)β D aαbα = (ab)α
Câu 128. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A= a√3 Thể tích của khối chóp S ABCD là
A a3
√
3
a3√3
a3√3
12 .
Câu 129. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của
P= xy + x + 2y + 17
Câu 130. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
HẾT