TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tìm m để hàm số y = mx − 4 x + m đạt giá trị lớn nhất bằng[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 2. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu
Z
f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R
B Nếu
Z
f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R
C Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx
D Nếu
Z
f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R
Câu 3. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 ln 2x
x3ln 10 . B y
0 = 1 − 2 log 2x
x3 C y0 = 1 − 4 ln 2x
2x3ln 10 . D y
0 = 1 2x3ln 10.
Câu 4. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là 3, phần ảo là −4 B Phần thực là 3, phần ảo là 4.
C Phần thực là −3, phần ảo là −4 D Phần thực là −3, phần ảo là 4.
Câu 5. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
Câu 6. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối bát diện đều B Khối tứ diện đều C Khối 12 mặt đều D Khối 20 mặt đều.
Câu 7. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
Câu 8. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 9. Tính lim
x→1
x3− 1
x −1
Câu 10. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Câu 11. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 12. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối 12 mặt đều B Khối tứ diện đều C Khối 20 mặt đều D Khối bát diện đều.
Trang 2Câu 13. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 14. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng (0;+∞) B Hàm số nghịch biến trên khoảng (0; 2).
C Hàm số đồng biến trên khoảng (0; 2) D Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 15. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
√
Câu 16. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. 4a
3√
3
a3√ 3
5a3√ 3
2a3√ 3
3 .
Câu 17. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
A −1
1
Câu 18. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey+ 1 B xy0 = −ey+ 1 C xy0 = −ey
− 1 D xy0 = ey
− 1
Câu 19. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 4 đỉnh, 6 cạnh, 4 mặt B 6 đỉnh, 6 cạnh, 4 mặt C 3 đỉnh, 3 cạnh, 3 mặt D 4 đỉnh, 8 cạnh, 4 mặt.
Câu 20. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
a
√ 3
a
Câu 21. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 22. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
2
√
a2+ b2 B. ab
a2+ b2 C. √ 1
a2+ b2 D. √ ab
a2+ b2
Câu 23. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
A 2
√
√
√
Câu 24. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Câu 25. [1] Tính lim1 − 2n
3n+ 1 bằng?
A. 2
2
1
Trang 3Câu 26. [1] Tập xác định của hàm số y= log3(2x+ 1) là
2
!
2;+∞
!
2;+∞
!
2
!
Câu 27. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là
Câu 28. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b) B lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b) D lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b)
Câu 29. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = (1, 01)3
(1, 01)3− 1 triệu. B m = 100.(1, 01)3
3 triệu.
C m = 120.(1, 12)3
(1, 12)3− 1 triệu. D m = 100.1, 03
3 triệu.
Câu 30 Hình nào trong các hình sau đây không là khối đa diện?
Câu 31. Khối đa diện đều loại {5; 3} có số cạnh
Câu 32. [1] Tập xác định của hàm số y= 4x2+x−2là
A. D = R \ {1; 2} B. D = R C. D = [2; 1] D. D = (−2; 1)
Câu 33. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 34. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
A. 7
-2
Câu 35. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A a
√
√ 57
a√57
2a√57
19 .
Câu 36. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
6.
Câu 37. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
11
Câu 38. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a√3
a√6
a√6
3 .
Trang 4Câu 39. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2
)?
Câu 40. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng
Câu 41. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 42. [2] Đạo hàm của hàm số y = x ln x là
A y0 = ln x − 1 B y0 = 1 − ln x C y0 = x + ln x D y0 = 1 + ln x
Câu 43. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m
mtan x+ 1 nghịch biến trên khoảng
0;π
4
Câu 44. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
√
b2+ c2
√
a2+ b2+ c2 B. c
√
a2+ b2
√
a2+ b2+ c2 C. abc
√
b2+ c2
√
a2+ b2+ c2 D. b
√
a2+ c2
√
a2+ b2+ c2
Câu 45. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Câu 46. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A 2a2
√
3√ 3
a3√3
a3√2
24 .
Câu 47. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
9.
Câu 48. [1] Đạo hàm của làm số y = log x là
A y0 = 1
xln 10. B y
0 = 1
1
0 = ln 10
x .
Câu 49. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 50. Khối đa diện đều loại {3; 4} có số mặt
Câu 51. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là
Câu 52. Thể tích của khối lập phương có cạnh bằng a
√ 2
A. 2a
3√
2
√ 2
Trang 5Câu 53. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
6
a3√ 6
a3√ 2
a3√ 6
36 .
Câu 54. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 55. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
Câu 56. Tính giới hạn lim2n+ 1
3n+ 2
A. 3
2
1
Câu 57. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 58. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2
− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Câu 59. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là
Câu 60. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 61. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 62. Tứ diện đều thuộc loại
Câu 63. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 64. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
Câu 65. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Cả hai đều sai B Cả hai đều đúng C Chỉ có (I) đúng D Chỉ có (II) đúng.
Câu 66. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
A. 2a
3
4a3√3
4a3
2a3√3
3 .
Trang 6Câu 67. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
A −1
1
2.
Câu 68. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Trục thực.
B Đường phân giác góc phần tư thứ nhất.
C Hai đường phân giác y= x và y = −x của các góc tọa độ
D Trục ảo.
Câu 69. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 70. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 71. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2
2 = y −3
3 = z+ 4
−5 và d
0 : x+ 1
3 = y −4
−2 = z −4
−1
A. x
2 = y −2
3 = z −3
x
1 = y
1 = z −1
1 .
C. x −2
2 = y −2
3 = z −3
x −2
2 = y+ 2
2 = z −3
2 .
Câu 72. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 73. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 74. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Không thay đổi B Giảm đi n lần C Tăng lên n lần D Tăng lên (n − 1) lần.
Câu 75. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1
3x
3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng
√ 24
Câu 76. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
Câu 77. Hàm số nào sau đây không có cực trị
A y = x3− 3x B y= x4− 2x+ 1 C y= x −2
2x+ 1. D y= x +
1
x.
Câu 78. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7
Câu 79. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối tứ diện đều C Khối bát diện đều D Khối lập phương.
Câu 80. Khối đa diện đều loại {3; 4} có số đỉnh
Trang 7Câu 81. Giá trị cực đại của hàm số y = x3
− 3x2− 3x+ 2
A 3 − 4
√
√
Câu 82. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1+ 2e
4 − 2e. B m= 1 − 2e
4e+ 2. C m=
1+ 2e 4e+ 2. D m=
1 − 2e
4 − 2e.
Câu 83. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 84. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 85. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?
Câu 86. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A f (x) có giới hạn hữu hạn khi x → a B lim
x→a + f(x)= lim
x→a − f(x)= a
C lim
x→a + f(x)= lim
x→a − f(x)= +∞
Câu 87. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
x= t
y= −1
z= −t
và hai mặt phẳng (P), (Q)
lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)
A (x − 3)2+ (y + 1)2+ (z + 3)2= 9
4. B (x+ 3)2+ (y + 1)2+ (z − 3)2= 9
4.
C (x − 3)2+ (y − 1)2+ (z − 3)2= 9
4. D (x+ 3)2+ (y + 1)2+ (z + 3)2= 9
4.
Câu 88. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 89. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?
A y = logaxtrong đó a= √3 − 2 B y = log1 x
C y = log√
4 x
Câu 90. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. 2a
a
a
a√2
3 .
Câu 91. [2-c] Giá trị nhỏ nhất của hàm số y = x2
ln x trên đoạn [e−1; e] là
A −1
1
Câu 92. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = R \ {1} B. D = (−∞; 1) C. D = R D. D = (1; +∞)
Câu 93. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Trang 8Câu 94 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
Câu 95. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 96. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A. a
3√
2
a3√ 3
a3√ 2
3√ 3
Câu 97. Dãy số nào sau đây có giới hạn khác 0?
A. √1
1
n+ 1
sin n
n .
Câu 98. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 99. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4
2x+ 12 log2
2x log2 8
x
Câu 100. [2D1-3] Cho hàm số y = −1
3x
3+mx2+(3m+2)x+1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A −2 ≤ m ≤ −1 B (−∞; −2) ∪ (−1; +∞) C (−∞; −2]∪[−1; +∞) D −2 < m < −1.
Câu 101. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 102. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
sai
D Câu (III) sai.
Câu 103. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là
A. 8
3; 0; 0
!
3; 0; 0
!
3; 0; 0
!
Câu 104. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng
A. 1079
1637
23
1728
4913.
Câu 105. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0
A A0(−3; 3; 3) B A0(−3; 3; 1) C A0(−3; −3; −3) D A0(−3; −3; 3)
Câu 106. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Trang 9Câu 107. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. a
5a
2a
8a
9 .
Câu 108 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
( f (x) − g(x))dx=
Z
f(x)dx −
Z g(x)dx B.
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0
C.
Z
f(x)g(x)dx=
Z
f(x)dx
Z
Z ( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx
Câu 109. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 110. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= loga2 B log2a= 1
log2a. C log2a= 1
loga2. D log2a= − loga2
Câu 111. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 112. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó
Q0 là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng vi khuẩn đạt 100.000 con?
Câu 113. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
A. 3
5
Câu 114. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
A Phần thực là 4, phần ảo là −1 B Phần thực là 4, phần ảo là 1.
C Phần thực là −1, phần ảo là 4 D Phần thực là −1, phần ảo là −4.
Câu 115. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±3 B m= ±√3 C m= ±√2 D m= ±1
Câu 116. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
A 0 ≤ m ≤ 9
3
3
4.
Câu 117. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 118. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 119. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. 4a
3√
3
a3
√ 3
8a3√ 3
8a3√ 3
9 .
Câu 120. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
√
3, 38
Trang 10Câu 121. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+ log23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 122 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 123. [1] Giá trị của biểu thức log √31
10 bằng
1
Câu 124. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
5
Câu 125. Xác định phần ảo của số phức z= (√2+ 3i)2
Câu 126. Tính lim 5
n+ 3
Câu 127. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
C lim un= 1
Câu 128. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số mặt của khối chóp bằng 2n+1.
B Số đỉnh của khối chóp bằng 2n+ 1
C Số cạnh của khối chóp bằng 2n.
D Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 129. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
A m = ±√2 B m= ±1 C m= ±√3 D m= ±3
Câu 130. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
√ 6
√
HẾT