TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặ[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 4 đỉnh, 6 cạnh, 4 mặt B 6 đỉnh, 6 cạnh, 4 mặt C 3 đỉnh, 3 cạnh, 3 mặt D 4 đỉnh, 8 cạnh, 4 mặt.
Câu 2. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±1 B m= ±√2 C m= ±√3 D m= ±3
Câu 3. Tính lim
x→1
x3− 1
x −1
Câu 4. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = 100.(1, 01)3
3 triệu.
C m = 120.(1, 12)3
(1, 12)3− 1 triệu. D m = (1, 01)3
(1, 01)3− 1 triệu.
Câu 5. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là
A. 1
2
9
1
10.
Câu 6. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối tứ diện đều B Khối bát diện đều C Khối lập phương D Khối 12 mặt đều.
Câu 7. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 8. Cho
Z 1
0
xe2xdx= ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
A. 1
1
4.
Câu 9. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 10. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z
A P= −1+ i
√ 3
2 . B P= −1 − i
√ 3
Câu 11. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2
− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 12 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Trang 2A 2 B 1 C 3 D 4.
Câu 13. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 14. [1] Tính lim1 − 2n
3n+ 1 bằng?
A. 2
1
2
Câu 15. Giá trị cực đại của hàm số y = x3
− 3x+ 4 là
Câu 16. Dãy số nào sau đây có giới hạn khác 0?
A. sin n
n+ 1
1
√
1
n.
Câu 17. [4-1213d] Cho hai hàm số y = x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y = |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 18. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 8a
5a
a
2a
9 .
Câu 19. Tính lim
x→3
x2− 9
x −3
Câu 20. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3√3
2a3√3
3√ 3
Câu 21. Dãy số nào sau đây có giới hạn là 0?
A. −5
3
!n
3
!n
e
!n
3
!n
Câu 22. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Hai đường phân giác y= x và y = −x của các góc tọa độ
B Trục thực.
C Trục ảo.
D Đường phân giác góc phần tư thứ nhất.
Câu 23. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 24. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A a
√
√ 57
a√57
2a√57
19 .
Trang 3Câu 25. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 26. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 3
6 . B V = πa3
√ 3
3 . C V = πa3
√ 6
6 . D V = πa3
√ 3
2 .
Câu 27. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
√
3
a
a
3.
Câu 28. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
A f0(0)= 1
ln 10. B f
0 (0)= ln 10 C f0(0)= 1 D f0(0)= 10
Câu 29. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là
Câu 30. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. a
3√
3
a3
√ 6
a3√3
2a3
√ 6
9 .
Câu 31. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 32. Cho
Z 2
1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 33. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 34. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√2
a3√2
a3√2
4 .
Câu 35. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 36. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
5
a3√ 3
a3√ 5
a3√ 5
12 .
Câu 37. Dãy số nào sau đây có giới hạn là 0?
A un= n2− 3n
n2 B un = n2− 2
5n − 3n2 C un = n2+ n + 1
(n+ 1)2 D un = 1 − 2n
5n+ n2
Câu 38. Khối đa diện đều loại {4; 3} có số mặt
Câu 39. Khối đa diện đều loại {3; 4} có số đỉnh
Trang 4Câu 40. Cho hàm số y= x3
− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng 1
3; 1
!
C Hàm số nghịch biến trên khoảng −∞;1
3
! D Hàm số đồng biến trên khoảng 1
3; 1
!
Câu 41. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
a3√3
a3
√ 2
3√ 3
Câu 42. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Chỉ có (II) đúng B Cả hai đều sai C Cả hai đều đúng D Chỉ có (I) đúng.
Câu 43. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
√ 6
√ 6
Câu 44. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b) B lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b)
C lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b) D lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b)
Câu 45. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√ 2
a3√ 3
a3√ 3
6 .
Câu 46. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là
Câu 47. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
"
2;5 2
!
2; 3
!
Câu 48. Hàm số y= x + 1
x có giá trị cực đại là
Câu 49. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính
f(2)+ f (4)?
Câu 50. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là
A. C
10
50.(3)40
40
50.(3)10
20
50.(3)30
20
50.(3)20
450
Trang 5Câu 51. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −∞; −1
2
!
2
!
2;+∞
!
2;+∞
!
Câu 52. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m < 1
1
1
1
4.
Câu 53. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 54. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
A. 4035
2017
2016
2017.
Câu 55. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 56. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = (−∞; 1) B. D = R \ {1} C. D = R D. D = (1; +∞)
Câu 57. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3√
3
3
a3√ 3
6 .
Câu 58. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
Câu 59. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm
đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 60. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
d: x+ 1
2 = y −5
2 = z
−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng
dđồng thời cách A một khoảng bé nhất
A ~u = (2; 2; −1) B ~u= (3; 4; −4) C ~u= (1; 0; 2) D ~u= (2; 1; 6)
Câu 61. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?
Câu 62. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= loga2 B log2a= 1
log2a. C log2a= 1
loga2. D log2a= − loga2
Câu 63. [1] Tập xác định của hàm số y= 2x−1là
A. D = R \ {0} B. D = (0; +∞) C. D = R D. D = R \ {1}
Câu 64 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
Z 1
xdx= ln |x| + C, C là hằng số
C.
Z
dx = x + C, C là hằng số D.
Z
xαdx= α + 1xα+1 + C, C là hằng số
Trang 6Câu 65. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 3ac
3b+ 2ac
3b+ 3ac
3b+ 2ac
c+ 3 .
Câu 66. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
A − 23
9
5
13
100.
Câu 67. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là
Câu 68. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 69. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ [a; b], ta có F0(x)= f (x)
B Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
C Với mọi x ∈ (a; b), ta có f0(x)= F(x)
D Với mọi x ∈ [a; b], ta có F0(x)= f (x)
Câu 70. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (0; 1) B Hàm số nghịch biến trên khoảng (−∞; 0).
C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số đồng biến trên khoảng (1; 2).
Câu 71. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 72. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. 2a
√
3
a
√ 3
a
√ 3
√ 3
Câu 73. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 74 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx
!0
Z
k f(x)dx= k
Z
f(x)dx, k là hằng số
C.
Z
f(x)dx= F(x) + C ⇒
Z
f(t)dt= F(t) + C D.
Z
f(x)dx= F(x)+C ⇒
Z
f(u)dx = F(u)+C
Câu 75 Mệnh đề nào sau đây sai?
A.
Z
f(x)dx
!0
= f (x)
B F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
C Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
D Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 76. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x
x trên đoạn [1; e
3 ] là M = m
en, trong đó n, m là các
số tự nhiên Tính S = m2+ 2n3
Câu 77. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = 4 +2
e. B T = e + 1 C T = e + 3 D T = e + 2
e.
Trang 7Câu 78. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1
9
! là
Câu 79. [2] Đạo hàm của hàm số y = x ln x là
A y0 = ln x − 1 B y0 = 1 − ln x C y0 = 1 + ln x D y0 = x + ln x
Câu 80. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 81. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A. a
√
2
a√2
√
√ 2
Câu 82. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là
Câu 83. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦
Đường chéo
BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là
A. 4a
3√
6
2a3√ 6
a3√ 6
3√ 6
Câu 84. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 85. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 86. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Một hình chóp tam giác và một hình chóp tứ giác.
B Hai hình chóp tam giác.
C Hai hình chóp tứ giác.
D Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 87. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 88. Khối đa diện đều loại {4; 3} có số cạnh
Câu 89. [2] Phương trình log4(x+ 1)2+ 2 = log√
2
√
4 − x+ log8(4+ x)3 có tất cả bao nhiêu nghiệm?
Câu 90. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2
2 = y −3
3 = z+ 4
−5 và d
0 : x+ 1
3 = y −4
−2 = z −4
−1
A. x −2
2 = y+ 2
2 = z −3
x −2
2 = y −2
3 = z −3
4 .
C. x
1 = y
1 = z −1
x
2 = y −2
3 = z −3
−1 .
Câu 91. Thể tích của khối lập phương có cạnh bằng a
√ 2
A. 2a
3√
2
3√
2 D V = 2a3
Trang 8Câu 92. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin x+ 2cos x
lần lượt là
Câu 93. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 94. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 95. Khối đa diện đều loại {3; 5} có số cạnh
Câu 96. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Chỉ có (II) đúng B Cả hai câu trên sai C Chỉ có (I) đúng D Cả hai câu trên đúng.
Câu 97. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 98. Xác định phần ảo của số phức z= (√2+ 3i)2
A 6
√
√
Câu 99. [1] Đạo hàm của làm số y = log x là
A y0 = 1
xln 10. B y
0 = 1
0 = ln 10
1
10 ln x.
Câu 100. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối tứ diện đều B Khối lập phương C Khối bát diện đều D Khối 12 mặt đều.
Câu 101. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey+ 1 B xy0 = −ey+ 1 C xy0 = −ey
− 1
Câu 102. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
A.
√
√
Câu 103. [1] Giá trị của biểu thức 9log3 12bằng
Câu 104. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
5
#
"
−2
3;+∞
! C. " 2
5;+∞
!
3
#
Câu 105. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
C Phần thực là −3, phần ảo là −4 D Phần thực là 3, phần ảo là −4.
Câu 106. Tính lim 5
n+ 3
Trang 9Câu 107. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 108. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 109. [1] Biết log6 √a= 2 thì log6abằng
Câu 110. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 111. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 112. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Câu 113. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 114. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 115. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số mặt của khối chóp bằng 2n+1.
B Số cạnh của khối chóp bằng 2n.
C Số mặt của khối chóp bằng số cạnh của khối chóp.
D Số đỉnh của khối chóp bằng 2n+ 1
Câu 116. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng
A. 1
1
1
2.
Câu 117. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 118. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
√
Câu 119. Tính lim
x→ +∞
x −2
x+ 3
Câu 120. [1] Tính lim 1 − n
2
2n2+ 1 bằng?
1
1
2.
Câu 121. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
A. 1
2√e.
Trang 10Câu 122 Phát biểu nào sau đây là sai?
A lim √1
nk = 0 với k > 1
C lim qn= 1 với |q| > 1 D lim un= c (Với un = c là hằng số)
Câu 123. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 124. Cho các dãy số (un) và (vn) và lim un = a, lim vn= +∞ thì limun
vn bằng
Câu 125. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng (0;+∞) B Hàm số đồng biến trên khoảng (0; 2).
C Hàm số nghịch biến trên khoảng (−∞; 2) D Hàm số nghịch biến trên khoảng (0; 2).
Câu 126. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+ qlog23x+ 1+4m−
1= 0 có ít nhất một nghiệm thuộc đoạnh
1; 3
√
3i
Câu 127. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?
A y = log√
C y = logπ
Câu 128 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A aαβ = (aα
)β B aαbα = (ab)α C aα+β = aα.aβ D. a
α
aβ = aα
Câu 129. Tính lim
x→−∞
x+ 1 6x − 2 bằng
1
1
6.
Câu 130. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e−2+ 2; m = 1 B M = e−2+ 1; m = 1
C M = e2− 2; m = e−2+ 2 D M = e−2− 2; m= 1
HẾT