Free LATEX (Đề thi có 11 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [1] Cho a > 0, a , 1 Giá trị của biểu thức loga 3√a bằng A −3 B − 1 3 C 1 3 D 3 Câu 2 Mỗi đỉnh của hình đa[.]
Trang 1Free LATEX
(Đề thi có 11 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3abằng
1
Câu 2. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 3. Tính lim
x→5
x2− 12x+ 35
25 − 5x
A −2
2
Câu 4. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 5. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
Câu 6. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 7. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 8. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
2.
Câu 9. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 10. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 11. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 12. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3√6
a3√6
a3√3
24 .
Câu 13. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A. a
3√
3
3√
3√ 2
a3√2
12 .
Câu 14 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
B Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
Trang 2C Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn = −∞
D Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
Câu 15. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 16. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A. −∞;2
3
#
"
−2
3;+∞
! C. " 2
5;+∞
!
5
#
Câu 17. Tứ diện đều thuộc loại
Câu 18. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu
Z
f0(x)dx =
Z
g0(x)dx thì f (x) = g(x), ∀x ∈ R
B Nếu
Z
f(x)dx=
Z g(x)dx thì f (x)= g(x), ∀x ∈ R
C Nếu
Z
f(x)dx=
Z
g(x)dx thì f (x) , g(x), ∀x ∈ R
D Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx
Câu 19 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
k f(x)dx= k
Z
f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
B.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
C.
Z
[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R
D.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 20. Tập xác định của hàm số f (x)= −x3+ 3x2
− 2 là
Câu 21. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 22. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
A. 4035
2016
2017
Câu 23. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 24. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2
− 2 ln x trên [e−1; e] là
A M = e−2− 2; m= 1 B M = e−2+ 1; m = 1
C M = e2− 2; m = e−2+ 2 D M = e−2+ 2; m = 1
Câu 25. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A.
√
√ 13
√
√ 13
Trang 3Câu 26. Cho hàm số y= 3 sin x − 4 sin3
x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 27. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 28. [1] Đạo hàm của làm số y = log x là
A y0 = ln 10
0 = 1
0 = 1
xln 10. D.
1
10 ln x.
Câu 29. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
3
√ 3
√ 3
4 .
Câu 30. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số mặt của khối chóp bằng 2n+1.
B Số cạnh của khối chóp bằng 2n.
C Số đỉnh của khối chóp bằng 2n+ 1
D Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 31. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 32. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
5
2.
Câu 33. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
Câu 34. Hàm số nào sau đây không có cực trị
A y = x3− 3x B y= x +1
x. C y= x −2
2x+ 1. D y= x4− 2x+ 1.
Câu 35. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3√
3
3√ 3
a3
3 .
Câu 36. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là
A. 10a
3√
3
Câu 37. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞
f(x)
g(x) = a
C lim
x→ +∞[ f (x) − g(x)]= a − b D lim
x→ +∞[ f (x)g(x)]= ab
Câu 38. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 39. [1] Giá trị của biểu thức 9log3 12
bằng
Trang 4Câu 40 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
f(x)g(x)dx=
Z
f(x)dx
Z
Z ( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx
C.
Z
( f (x) − g(x))dx=
Z
f(x)dx −
Z g(x)dx D.
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0
Câu 41. Dãy số nào sau đây có giới hạn là 0?
A un= n2− 3n
n2 B un = n2+ n + 1
(n+ 1)2 C un = 1 − 2n
5n+ n2 D un = n2− 2
5n − 3n2
Câu 42. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
A (+∞; −∞) B (−∞; 1] C [3;+∞) D [1;+∞)
Câu 43. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = 1
2S h.
Câu 44. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm
đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 45. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|
A. 12
√
17
√
√
√ 5
Câu 46 Mệnh đề nào sau đây sai?
A Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
B F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
C.
Z
f(x)dx
!0
= f (x)
D Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 47. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
√
a2+ c2
√
a2+ b2+ c2 B. c
√
a2+ b2
√
a2+ b2+ c2 C. a
√
b2+ c2
√
a2+ b2+ c2 D. abc
√
b2+ c2
√
a2+ b2+ c2
Câu 48. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 49. Tìm giới hạn lim2n+ 1
n+ 1
Câu 50. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
Câu 51. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 52. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m
mtan x+ 1 nghịch biến trên khoảng
0;π
4
Trang 5
Câu 53. Cho I = 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 54. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
a3
√ 5
a3
√ 5
a3
√ 5
12 .
Câu 55. Khối đa diện đều loại {3; 4} có số cạnh
Câu 56. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
A 7
√
√
√ 2
Câu 57. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√ 2
a3√ 3
a3√ 3
4 .
Câu 58. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng (0;+∞) B Hàm số nghịch biến trên khoảng (−∞; 2).
C Hàm số nghịch biến trên khoảng (0; 2) D Hàm số đồng biến trên khoảng (0; 2).
Câu 59. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 2a
a
8a
5a
9 .
Câu 60. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 61. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 62. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. 5a
3√
3
4a3√3
a3√3
2a3√3
3 .
Câu 63. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 64. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
Câu 65. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
A. 1
1
4.
Trang 6Câu 66. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦
Đường chéo
BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là
A. a
3√
6
4a3√ 6
3√
3√ 6
3 .
Câu 67. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 68. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m ≤ 1
1
1
1
4.
Câu 69. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Trục thực.
B Hai đường phân giác y= x và y = −x của các góc tọa độ
C Đường phân giác góc phần tư thứ nhất.
D Trục ảo.
Câu 70. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là −3, phần ảo là 4 B Phần thực là −3, phần ảo là −4.
C Phần thực là 3, phần ảo là 4 D Phần thực là 3, phần ảo là −4.
Câu 71. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
A. 1
3
√ 3
2 .
Câu 72. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 73. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
Câu 74. [1] Giá trị của biểu thức log √31
10 bằng
A −1
1
Câu 75 Phát biểu nào sau đây là sai?
A lim1
nk = 0
Câu 76. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
Câu 77. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
A 2
√
√
Câu 78. Xác định phần ảo của số phức z= (√2+ 3i)2
Câu 79. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Trang 7C Số đỉnh của khối chóp bằng số mặt của khối chóp.
D Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 80. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 81. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
2; 3
!
"
2;5 2
!
Câu 82. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3√
3
3√ 3
a3
3 .
Câu 83. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 84. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 85. Khẳng định nào sau đây đúng?
A Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B Hình lăng trụ đứng là hình lăng trụ đều.
C Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D Hình lăng trụ tứ giác đều là hình lập phương.
Câu 86. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Câu 87. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 88. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 89. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y
A Pmin= 9
√
11 − 19
9 . B Pmin = 2
√
11 − 3
3 . C Pmin = 9
√
11+ 19
9 . D Pmin= 18
√
11 − 29
21 .
Câu 90. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 91. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
Trang 8(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 92. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 93. [1] Tập xác định của hàm số y= 2x−1là
A. D = (0; +∞) B. D = R C. D = R \ {0} D. D = R \ {1}
Câu 94. Tính lim
x→3
x2− 9
x −3
Câu 95. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −1
2;+∞
!
2
!
2
!
2;+∞
!
Câu 96. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 97. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
A Dãy số unkhông có giới hạn khi n →+∞ B lim un= 1
2.
Câu 98. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 99. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối 20 mặt đều C Khối tứ diện đều D Khối bát diện đều.
Câu 100. Cho
Z 2 1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 101. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Một hình chóp tứ giác và một hình chóp ngũ giác.
B Hai hình chóp tứ giác.
C Một hình chóp tam giác và một hình chóp tứ giác.
D Hai hình chóp tam giác.
Câu 102. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b) B lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b)
C lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b) D lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b)
Câu 103. Khối đa diện đều loại {3; 4} có số mặt
Trang 9Câu 104. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC
Câu 105. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Câu 106. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
2.
Câu 107. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 108. [1] Tính lim 1 − n
2 2n2+ 1 bằng?
1
1
2.
Câu 109. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 110. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 4 ln 2x
2x3ln 10 . B y
0 = 1 − 2 ln 2x
x3ln 10 . C y
0 = 1 − 2 log 2x
x3 D y0 = 1
2x3ln 10.
Câu 111. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 112. Hàm số f có nguyên hàm trên K nếu
C f (x) có giá trị nhỏ nhất trên K D f (x) có giá trị lớn nhất trên K.
Câu 113. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
26 .
Câu 114. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
15.
Câu 115. Khối đa diện đều loại {3; 5} có số mặt
Câu 116. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
6
a3
√ 15
a3
√ 5
3√ 6
Câu 117. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Trang 10Câu 118. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 119. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
B Với mọi x ∈ [a; b], ta có F0(x)= f (x)
C Với mọi x ∈ [a; b], ta có F0(x)= f (x)
D Với mọi x ∈ (a; b), ta có f0(x)= F(x)
Câu 120. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
A 0 ≤ m ≤ 3
9
3
4.
Câu 121. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 122. Tính limcos n+ sin n
n2+ 1
Câu 123. Dãy số nào có giới hạn bằng 0?
A un= n3− 3n
n+ 1 . B un = n2− 4n C un = 6
5
!n D un = −2
3
!n
Câu 124. Dãy số nào sau đây có giới hạn là 0?
A. 1
3
!n
3
!n
e
!n
3
!n
Câu 125. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 126. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
a√3
a
Câu 127. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
2
a3
√ 3
a3
√ 3
3√ 3
Câu 128. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey
Câu 129. Tính lim n −1
n2+ 2