Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi A d nằm trên P B d song song với[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 2. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
a3
√ 2
3√
3√ 3
4 .
Câu 3. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
6.
Câu 4. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
sai
Câu 5. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu
Z
f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R
B Nếu
Z
f0(x)dx =
Z
g0(x)dx thì f (x) = g(x), ∀x ∈ R
C Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx
D Nếu
Z
f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R
Câu 6. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 7. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 8. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 4 mặt B 3 đỉnh, 3 cạnh, 3 mặt C 4 đỉnh, 6 cạnh, 4 mặt D 4 đỉnh, 8 cạnh, 4 mặt.
Câu 9 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A. a
α
aβ = aα B aαbα = (ab)α C aα+β = aα.aβ D aαβ = (aα)β
Câu 10. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±√3 B m= ±√2 C m= ±3 D m= ±1
Trang 2Câu 11. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số mặt của khối chóp bằng số cạnh của khối chóp.
B Số cạnh của khối chóp bằng 2n.
C Số đỉnh của khối chóp bằng 2n+ 1
D Số mặt của khối chóp bằng 2n+1.
Câu 12. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z
A P= −1+ i
√ 3
√ 3
2 . D P= 2
Câu 13. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 14. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
A. 3
2.
Câu 15. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 16. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 17. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
9
Câu 18. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
Câu 19. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Câu 20. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
√ 5
Câu 21. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 22. Khối đa diện đều loại {3; 3} có số cạnh
Câu 23. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
7
a2√5
a2√2
11a2
32 .
Trang 3Câu 24. Tính lim n −1
n2+ 2
Câu 25. Hàm số nào sau đây không có cực trị
A y = x4− 2x+ 1 B y= x +1
x. C y= x3− 3x D y= x −2
2x+ 1.
Câu 26. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
√ 3
√ 3
Câu 27. Thể tích của khối lập phương có cạnh bằng a
√ 2
A V = a3√
3√ 2
Câu 28. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. a
√
3
2a√3
√
√ 3
3 .
Câu 29. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 30 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
dx = x + C, C là hằng số B.
Z
xαdx= α + 1xα+1 + C, C là hằng số
C.
Z
1
xdx= ln |x| + C, C là hằng số D.
Z 0dx = C, C là hằng số
Câu 31. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 32. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = 100.(1, 01)3
3 triệu.
C m = 120.(1, 12)3
(1, 12)3− 1 triệu. D m = (1, 01)3
(1, 01)3− 1 triệu.
Câu 33. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
3√
3
4a3√ 3
a3
a3
6 .
Câu 34. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
A m = ±√3 B m= ±√2 C m= ±3 D m= ±1
Câu 35. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3)−√ 6
3x+ 1 Tính
Z 1 0
f(x)dx
Trang 4Câu 36. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 37. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 38. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
Câu 39. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Đường phân giác góc phần tư thứ nhất.
B Trục thực.
C Trục ảo.
D Hai đường phân giác y= x và y = −x của các góc tọa độ
Câu 40. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 41. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
3
a3
a3
24.
Câu 42. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
A.
√
√
Câu 43. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
A. 1
Câu 44 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
B.
Z
[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R
C.
Z
k f(x)dx= k
Z
f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
D.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 45. Biểu thức nào sau đây không có nghĩa
√
√
−1
Câu 46 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx B.
Z
f(x)g(x)dx=Z f(x)dx
Z g(x)dx
C.
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx D.
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0
Câu 47. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 48. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Trang 5Câu 49. Cho
1 0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
A. 1
1
2.
Câu 50. [1] Biết log6 √a= 2 thì log6abằng
Câu 51 Phát biểu nào sau đây là sai?
A lim 1
nk = 0 với k > 1 B lim qn= 1 với |q| > 1
C lim √1
Câu 52. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
A. 1
1
Câu 53. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Bốn tứ diện đều và một hình chóp tam giác đều.
B Một tứ diện đều và bốn hình chóp tam giác đều.
C Năm hình chóp tam giác đều, không có tứ diện đều.
D Năm tứ diện đều.
Câu 54. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2(e) là:
A. 8
8
1
1
9.
Câu 55. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là
√
2 − 1, phần ảo là −
√
√
2, phần ảo là −
√ 3
C Phần thực là
√
2 − 1, phần ảo là
√
√
2, phần ảo là 1 −
√ 3
Câu 56. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 57. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 ln 2x
x3ln 10 . B y
2x3ln 10. C y
0 = 1 − 2 log 2x
x3 D y0 = 1 − 4 ln 2x
2x3ln 10 .
Câu 58. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
2a
8a
a
9.
Câu 59. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
√
38
3a
a√38
3a√58
29 .
Câu 60. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3
abằng
1
3.
Trang 6Câu 61. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 62. [4] Xét hàm số f (t)= 9t
9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho
f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S
Câu 63. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là
Câu 64. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = ey+ 1 C xy0 = ey
− 1
Câu 65. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Câu 66. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 67. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
A 0 < m ≤ 3
9
3
Câu 68. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 69. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C Số đỉnh của khối chóp bằng số mặt của khối chóp.
D Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 70. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Chỉ có (II) đúng B Cả hai câu trên đúng C Cả hai câu trên sai D Chỉ có (I) đúng.
Câu 71. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
2
√
a2+ b2 B. √ 1
a2+ b2 C. ab
a2+ b2 D. √ ab
a2+ b2
Câu 72. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
2S h. D V = 1
3S h.
Câu 73. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 log 2x
x3 B y0 = 1 − 2 ln 2x
x3ln 10 . C y
0 = 1 − 4 ln 2x 2x3ln 10 . D y
2x3ln 10.
Câu 74. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
Trang 7(I) lim nk = +∞ với k nguyên dương.
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 75. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos2x
lần lượt là
√
2 và 3 C 2 và 2
√
√
2 và 3
Câu 76. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2
− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Câu 77. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 78. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
A. ln 2
1
Câu 79. Giá trị cực đại của hàm số y = x3− 3x+ 4 là
Câu 80. [1] Tập xác định của hàm số y= 2x−1là
A. D = R \ {1} B. D = R C. D = R \ {0} D. D = (0; +∞)
Câu 81 Mệnh đề nào sau đây sai?
A Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
C.
Z
f(x)dx
!0
= f (x)
D F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
Câu 82. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 83. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 84. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 85. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 2ac
3b+ 3ac
3b+ 2ac
3b+ 3ac
c+ 1 .
Câu 86. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
"
2;5 2
!
2; 3
!
Câu 87. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
2
a3√6
a3√3
a3√3
48 .
Trang 8Câu 88. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 89. Cho
Z 2 1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 90. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
9 .
Câu 91. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3√
3
3√ 3
a3
3 .
Câu 92. Khối đa diện đều loại {5; 3} có số cạnh
Câu 93. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
√
Câu 94. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
√ 3
3
√ 3
4 .
Câu 95. Khối đa diện đều loại {3; 5} có số mặt
Câu 96. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối 20 mặt đều B Khối bát diện đều C Khối 12 mặt đều D Khối tứ diện đều.
Câu 97. Tính lim
x→1
x3− 1
x −1
Câu 98. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3
√ 3
a3
√ 3
a3
√ 3
12 .
Câu 99. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số đồng biến trên khoảng (1; 2) B Hàm số nghịch biến trên khoảng (−∞; 0).
C Hàm số nghịch biến trên khoảng (0; 1) D Hàm số nghịch biến trên khoảng (1;+∞)
Câu 100. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
Câu 101. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó
Q0 là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng vi khuẩn đạt 100.000 con?
Trang 9Câu 102. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
Câu 103. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối tứ diện đều C Khối lập phương D Khối bát diện đều.
Câu 104. Tính giới hạn lim2n+ 1
3n+ 2
A. 3
1
2
3.
Câu 105. [1] Giá trị của biểu thức 9log3 12bằng
Câu 106. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A. a
√
2
√
√ 2
√ 2
Câu 107. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 5 đỉnh, 9 cạnh, 6 mặt.
Câu 108. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 109. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Hai hình chóp tam giác.
B Một hình chóp tam giác và một hình chóp tứ giác.
C Hai hình chóp tứ giác.
D Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 110. Tính limcos n+ sin n
n2+ 1
Câu 111. Tính lim
x→2
x+ 2
x bằng?
Câu 112. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
a2+ b2 B. √ ab
a2+ b2 C. √ 1
2√a2+ b2
Câu 113. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
C lim un= 1
Câu 114. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = ey+ 1 C xy0 = ey
− 1
Câu 115. Dãy số nào sau đây có giới hạn là 0?
A un= n2+ n + 1
(n+ 1)2 B un = 1 − 2n
5n+ n2 C un = n2− 2
5n − 3n2 D un = n2− 3n
n2
Trang 10Câu 116. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1 thỏa mãn |z1− 2 − i| = 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1gần giá trị nào nhất?
Câu 117. Xác định phần ảo của số phức z= (√2+ 3i)2
√
√ 2
Câu 118. Dãy số nào có giới hạn bằng 0?
A un= 6
5
!n
B un = −2
3
!n C un = n2
− 4n D un = n3− 3n
n+ 1 .
Câu 119. [12210d] Xét các số thực dương x, y thỏa mãn log31 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y
A Pmin= 9
√
11 − 19
9 . B Pmin = 9
√
11+ 19
9 . C Pmin = 18
√
11 − 29
21 D Pmin= 2
√
11 − 3
Câu 120. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A a
√
√
√
√ 6
2 .
Câu 121. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 122. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
Câu 123. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 124. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 125. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 126. Cho f (x)= sin2x −cos2x − x Khi đó f0(x) bằng
Câu 127. Tính lim 5
n+ 3
Câu 128. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
Câu 129. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của
P= xy + x + 2y + 17
Câu 130. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
A.
√
HẾT