Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Giá trị giới hạn lim x→−1 (x2 − x + 7) bằng? A 5 B 7 C 0 D 9 Câu 2 Mỗi đỉnh của hình đa diện là đỉnh chung[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 2. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 3. Tính lim
x→1
x3− 1
x −1
Câu 4. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= 1
loga2. B log2a= 1
log2a. C log2a= − loga2 D log2a= loga2
Câu 5. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C = a√3 Thể tích khối chóp S ABCD là
A. a
3
3√ 3
a3√ 3
3 .
Câu 6. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 7. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Tăng lên (n − 1) lần B Giảm đi n lần C Không thay đổi D Tăng lên n lần.
Câu 8. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 9. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 10. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
Câu 11. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?
Câu 12. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m
mtan x+ 1 nghịch biến trên khoảng
0;π
4
Câu 13. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Câu 14. Dãy số nào sau đây có giới hạn là 0?
A un= n2+ n + 1
(n+ 1)2 B un = 1 − 2n
5n+ n2 C un = n2− 3n
n2 D un = n2− 2
5n − 3n2
Câu 15. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
Trang 2Câu 16. [1] Tính lim 1 − n
2 2n2+ 1 bằng?
1
1
3.
Câu 17. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 2
√
11 − 3
3 . B Pmin = 9
√
11 − 19
9 . C Pmin = 18
√
11 − 29
21 D Pmin= 9
√
11+ 19
Câu 18. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a
√ 39
a
√ 39
a
√ 39
26 .
Câu 19 Các khẳng định nào sau đây là sai?
A.
Z
k f(x)dx= k
Z
f(x)dx, k là hằng số B.
Z
f(x)dx= F(x) + C ⇒
Z
f(t)dt= F(t) + C
C.
Z
f(x)dx= F(x)+C ⇒
Z
f(u)dx = F(u)+C D.
Z
f(x)dx
!0
= f (x)
Câu 20. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
A. a
3
a3
a3
3
Câu 21. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3√3
a3√3
a3√3
24 .
Câu 22. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3√
3
a3
3√ 3
6 .
Câu 23. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
Câu 24. Khối đa diện đều loại {5; 3} có số mặt
Câu 25. Tính lim
x→2
x+ 2
x bằng?
Câu 26. Biểu thức nào sau đây không có nghĩa
A. −3
√
√
Câu 27. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 28. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
A. 7
-2
Trang 3Câu 29. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 30. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 31. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 1
e. B M= e, m = 1 C M = 1
e, m = 0 D M = e, m = 0
Câu 32. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 33. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e + 3 B T = e + 1 C T = e + 2
e. D T = 4 + 2
e.
Câu 34. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
3
√ 3
√ 3
12.
Câu 35. Khối đa diện đều loại {3; 3} có số cạnh
Câu 36. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 37. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 38. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
15.
Câu 39. [2-c] Cho hàm số f (x) = 9x
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
Câu 40. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 41. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. a
3√
3
5a3√3
2a3√3
4a3√3
3 .
Câu 42. [1] Giá trị của biểu thức 9log3 12bằng
Trang 4Câu 43. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√ 2
a3√ 2
a3√ 2
12 .
Câu 44. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x)+ g(x)] = a + b B lim
x→ +∞
f(x) g(x) = a
b.
C lim
x→ +∞[ f (x)g(x)]= ab D lim
x→ +∞[ f (x) − g(x)]= a − b
Câu 45. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
A −5
4 < m < 0 B m > −5
Câu 46. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
A 8
√
√
√
Câu 47. Cho I = Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 48. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là
Câu 49. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 ln 2x
x3ln 10 . B y
0 = 1 − 4 ln 2x 2x3ln 10 . C y
0 = 1 − 2 log 2x
x3 D y0 = 1
2x3ln 10.
Câu 50. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3
− 2x2+ 3x − 1
Câu 51. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là
Câu 52. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 53. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 54. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 55. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 56. Khối đa diện đều loại {3; 3} có số mặt
Trang 5Câu 57. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
a2+ b2 B. √ ab
a2+ b2 C. ab
2
√
a2+ b2
Câu 58. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu
Z
f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R
B Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx
C Nếu
Z
f0(x)dx =
Z
g0(x)dx thì f (x) = g(x), ∀x ∈ R
D Nếu
Z
f(x)dx=
Z
g(x)dx thì f (x) , g(x), ∀x ∈ R
Câu 59. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
A Phần thực là −1, phần ảo là −4 B Phần thực là −1, phần ảo là 4.
C Phần thực là 4, phần ảo là 1 D Phần thực là 4, phần ảo là −1.
Câu 60. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 61 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
Z
dx = x + C, C là hằng số
C.
Z
xαdx= α + 1xα+1 + C, C là hằng số D.
Z 1
xdx= ln |x| + C, C là hằng số
Câu 62. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
√ 3
a
√ 3
a
√ 3
3 .
Câu 63. Khối chóp ngũ giác có số cạnh là
Câu 64. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là 3, phần ảo là 4 B Phần thực là −3, phần ảo là 4.
C Phần thực là −3, phần ảo là −4 D Phần thực là 3, phần ảo là −4.
Câu 65. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 66. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
2 .
Câu 67. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 68. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = 1
2S h.
Câu 69. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3
a3√3
a3√3
12 .
Trang 6Câu 70. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A. a
√
6
√
√
√ 6
Câu 71. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
2
a3√6
a3√6
a3√6
18 .
Câu 72. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 73. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 9 lần B Tăng gấp 18 lần C Tăng gấp 27 lần D Tăng gấp 3 lần.
Câu 74. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = 3a3
√ 3
2 . B V = 6a3 C V = a3
√ 3
2 . D V = 3a3√
3
Câu 75. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 76. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A. a
3√
2
a3√3
a3√3
2√ 2
Câu 77. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Chỉ có (II) đúng B Chỉ có (I) đúng C Cả hai câu trên đúng D Cả hai câu trên sai.
Câu 78. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 6
6 . B V = πa3
√ 3
2 . C V = πa3
√ 3
3 . D V = πa3
√ 3
6 .
Câu 79 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Trang 7Câu 80. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. 2a
√
57
a
√ 57
√
√ 57
17 .
Câu 81. Tìm m để hàm số y= x4
− 2(m+ 1)x2
− 3 có 3 cực trị
Câu 82. Khối đa diện đều loại {3; 5} có số mặt
Câu 83 Trong các khẳng định sau, khẳng định nào sai?
A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
C Cả ba đáp án trên.
D F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
Câu 84 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx B.
Z ( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx
C.
Z
k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 D.
Z
f(x)g(x)dx=Z f(x)dx
Z g(x)dx
Câu 85. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m ≥ 1
1
1
1
4.
Câu 86. Dãy số nào có giới hạn bằng 0?
A un= −2
3
!n B un = n2− 4n C un = 6
5
!n D un = n3− 3n
n+ 1 .
Câu 87. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
2
a3√ 3
a3√ 3
a3√ 6
48 .
Câu 88. Tính giới hạn lim2n+ 1
3n+ 2
A. 3
1
2
3.
Câu 89 Hình nào trong các hình sau đây không là khối đa diện?
Câu 90. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 91. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 92. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 93. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
A f0(0)= ln 10 B f0(0)= 10 C f0(0)= 1
ln 10. D f
0 (0)= 1
Trang 8Câu 94. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±√2 B m= ±√3 C m= ±3 D m= ±1
Câu 95. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 96. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z
A P= 2i B P= −1 − i
√ 3
√ 3
Câu 97. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
A. 1
ln 2
Câu 98. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
3√ 2
a3√3
a3
√ 2
4 .
Câu 99. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 100. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3√3
3√
3√ 3
3 .
Câu 101. Cho các dãy số (un) và (vn) và lim un = a, lim vn= +∞ thì limun
vn bằng
Câu 102. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 103 Mệnh đề nào sau đây sai?
A Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
B F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
C Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
D.
Z
f(x)dx
!0
= f (x)
Câu 104. Tính lim 2n
2− 1 3n6+ n4
3.
Câu 105 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 25 triệu đồng B 2, 20 triệu đồng C 2, 22 triệu đồng D 3, 03 triệu đồng.
Câu 106. [1] Tính lim1 − 2n
3n+ 1 bằng?
A. 2
2
1
Trang 9Câu 107. Khối đa diện đều loại {3; 4} có số mặt
Câu 108. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 109. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3√6
a3√6
a3√6
24 .
Câu 110. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Câu 111. Tính lim n −1
n2+ 2
Câu 112. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
A. " 5
2; 3
!
"
2;5 2
!
Câu 113. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 114. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối lập phương B Khối tứ diện đều C Khối 12 mặt đều D Khối bát diện đều.
Câu 115. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
5
#
3
# C. " 2
5;+∞
!
"
−2
3;+∞
!
Câu 116. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 117. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −∞; −1
2
!
2
!
2;+∞
!
2;+∞
!
Câu 118. Tìm giới hạn lim2n+ 1
n+ 1
Câu 119. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 120. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2
− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Trang 10Câu 121. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A= a√3 Thể tích của khối chóp S ABCD là
A. a
3√
3
3√
3
a3√3
3 .
Câu 122 Phát biểu nào sau đây là sai?
A lim √1
nk = 0 với k > 1
C lim qn= 1 với |q| > 1 D lim un= c (Với un = c là hằng số)
Câu 123. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 5 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 6 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.
Câu 124. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối bát diện đều B Khối 20 mặt đều C Khối tứ diện đều D Khối 12 mặt đều.
Câu 125. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b) B lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b) D lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b)
Câu 126. Cho
Z 1 0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
A. 1
1
4.
Câu 127. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
11
Câu 128. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3abằng
1
3.
Câu 129. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Hai khối chóp tứ giác.
B Một khối chóp tam giác, một khối chóp tứ giác.
C Hai khối chóp tam giác.
D Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 130. [1] Tập xác định của hàm số y= 2x−1là
A. D = R B. D = R \ {0} C. D = R \ {1} D. D = (0; +∞)
HẾT