Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 2. Khối đa diện đều loại {4; 3} có số mặt
Câu 3. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng −∞;1
3
!
C Hàm số nghịch biến trên khoảng 1
3; 1
! D Hàm số đồng biến trên khoảng 1
3; 1
!
Câu 4. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A (−∞; −1) và (0; +∞) B (−1; 0) C (−∞; 0) và (1; +∞) D (0; 1).
Câu 5. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
√
5.
Câu 6. Vận tốc chuyển động của máy bay là v(t)= 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ
5 đến giây thứ 15 là bao nhiêu?
Câu 7. Khối đa diện đều loại {3; 5} có số cạnh
Câu 8 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 20 triệu đồng B 3, 03 triệu đồng C 2, 22 triệu đồng D 2, 25 triệu đồng.
Câu 9. Tính lim
x→3
x2− 9
x −3
Câu 10. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ (a; b), ta có f0(x)= F(x)
B Với mọi x ∈ [a; b], ta có F0(x)= f (x)
C Với mọi x ∈ [a; b], ta có F0(x)= f (x)
D Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
Câu 11. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Trang 2Câu 12. [3-1122h] Cho hình lăng trụ ABC.ABC có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3√3
a3√3
a3√3
36 .
Câu 13. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 14. [1] Tập xác định của hàm số y= 4x 2 +x−2là
A. D = R B. D = (−2; 1) C. D = [2; 1] D. D = R \ {1; 2}
Câu 15. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 16. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A (−∞; −2) ∪ (−1; +∞) B −2 < m < −1 C −2 ≤ m ≤ −1 D (−∞; −2] ∪ [−1;+∞)
Câu 17. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3√ 15
a3√ 5
a3
3 .
Câu 18. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = 1
e, m = 0 B M= e, m = 0 C M = e, m = 1
e. D M = e, m = 1
Câu 19. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 20. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. a
√
3
a√3
2a√3
√ 3
Câu 21. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 22. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e−2
− 2; m= 1 B M = e−2+ 1; m = 1
C M = e−2+ 2; m = 1 D M = e2− 2; m = e−2+ 2
Câu 23. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A. −∞;2
5
#
"
−2
3;+∞
! C. " 2
5;+∞
!
3
#
Câu 24. [1] Giá trị của biểu thức 9log3 12bằng
Câu 25. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
1
3.
Trang 3Câu 26. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 27. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 28. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 29 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx B.
Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx
C.
Z
f(x)g(x)dx=
Z
f(x)dx
Z
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0
Câu 30. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 4 lần B Tăng gấp 6 lần C Tăng gấp 8 lần D Tăng gấp đôi.
Câu 31 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
u0(x)
u(x)dx= log |u(x)| + C
B Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
C F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2
x
D F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
Câu 32. [1] Tính lim1 − 2n
3n+ 1 bằng?
A. 1
2
2
3.
Câu 33. Khối đa diện đều loại {3; 5} có số mặt
Câu 34. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối tứ diện đều B Khối bát diện đều C Khối 12 mặt đều D Khối lập phương.
Câu 35. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = a3
√
3
2 . B V = 3a3
√ 3
2 . C V = 6a3 D V = 3a3√
3
Câu 36. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 37. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm
đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 38. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√ 2
a3√ 2
a3√ 2
12 .
Câu 39. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
A −1
1
Trang 4Câu 40. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A.
√
3
2 e
π
√ 2
2 e
π
2e
π
3
Câu 41. Khối đa diện đều loại {4; 3} có số cạnh
Câu 42. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
sai
D Câu (I) sai.
Câu 43. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a
√ 39
a
√ 39
a
√ 39
26 .
Câu 44. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
2
√
a2+ b2 C. ab
a2+ b2 D. √ 1
a2+ b2
Câu 45. Tính lim
x→2
x+ 2
x bằng?
Câu 46. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→a − f(x)= +∞ B lim
x→af(x)= f (a)
C f (x) có giới hạn hữu hạn khi x → a D lim
x→a + f(x)= lim
x→a − f(x)= a
Câu 47. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 48. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 49. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
e.
Câu 50. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 51. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
4 < m < 0 C m ≥ 0 D m > −5
4.
Câu 52. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
6
a3√3
a3√3
a3√2
16 .
Trang 5Câu 53. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3
− mx2+ 3x + 4 đồng biến trên R
Câu 54. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 55. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A.
√
√ 13
√
√ 2
Câu 56. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
2
a3
√ 6
a3
√ 6
a3
√ 6
36 .
Câu 57. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. a
√
57
2a√57
a√57
√ 57
Câu 58. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Cả hai đều đúng B Chỉ có (I) đúng C Chỉ có (II) đúng D Cả hai đều sai.
Câu 59. Khối đa diện đều loại {5; 3} có số mặt
Câu 60. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
√
3, 38 D 6, 12, 24.
Câu 61. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 62. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B Số đỉnh của khối chóp bằng số mặt của khối chóp.
C Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 63. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 64. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A. a
3√
2
a3
√ 3
a3
√ 3
2√ 2
Câu 65. [1-c] Giá trị biểu thức log236 − log2144 bằng
Trang 6Câu 66. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
3√ 3
a3
a3
√ 3
9 .
Câu 67. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3
− 2x2+ 3x − 1
Câu 68. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
2
e2
Câu 69 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx
!0
Z
k f(x)dx= k
Z
f(x)dx, k là hằng số
C.
Z
f(x)dx= F(x)+C ⇒
Z
f(u)dx = F(u)+C D.
Z
f(x)dx= F(x) + C ⇒
Z
f(t)dt= F(t) + C
Câu 70 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
Z 1
xdx= ln |x| + C, C là hằng số
C.
Z
dx = x + C, C là hằng số D.
Z
xαdx= α + 1xα+1 + C, C là hằng số
Câu 71. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 72. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e + 1 B T = 4 + 2
e. C T = e + 2
e. D T = e + 3
Câu 73. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 74. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Câu 75. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = (1; +∞) B. D = R C. D = R \ {1} D. D = (−∞; 1)
Câu 76. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
2.
Câu 77. [1] Biết log6 √a= 2 thì log6abằng
Câu 78. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trang 7Trong hai câu trên
A Cả hai câu trên sai B Cả hai câu trên đúng C Chỉ có (I) đúng D Chỉ có (II) đúng.
Câu 79. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A 6
√
√ 3
√
√ 3
3 .
Câu 80. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 81. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
a
a√3
2 .
Câu 82. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 83. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 84. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 85. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
A f0(0)= 10 B f0(0)= ln 10 C f0(0)= 1
ln 10. D f
0 (0)= 1
Câu 86. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
2x3ln 10. B y
0 = 1 − 2 ln 2x
x3ln 10 . C y
0 = 1 − 4 ln 2x 2x3ln 10 . D y
0 = 1 − 2 log 2x
x3
Câu 87. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
√
Câu 88. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối lập phương B Khối bát diện đều C Khối 12 mặt đều D Khối tứ diện đều.
Câu 89. Khối đa diện đều loại {3; 4} có số cạnh
Câu 90. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 91. Cho
Z 2 1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 92. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3)−√ 6
3x+ 1 Tính
Z 1 0
f(x)dx
Trang 8Câu 93. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
2
3.
Câu 94. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Câu 95. Cho hàm số y= x3
− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 96. Khối lập phương thuộc loại
Câu 97. Dãy số nào sau đây có giới hạn là 0?
A un= n2− 3n
n2 B un = n2− 2
5n − 3n2 C un = 1 − 2n
5n+ n2 D un = n2+ n + 1
(n+ 1)2
Câu 98. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
2 .
Câu 99. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
5
2.
Câu 100. Bát diện đều thuộc loại
Câu 101. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 102. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m < 1
1
1
1
4.
Câu 103 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
k f(x)dx= k
Z
f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
B.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
C.
Z
[ f (x)+ g(x)]dx =
Z
f(x)dx+
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
D.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 104. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 105. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 106. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2
)?
Trang 9Câu 107. Tìm giá trị lớn chất của hàm số y= x3
− 2x2− 4x+ 1 trên đoạn [1; 3]
Câu 108. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
A. 3
2.
Câu 109. [12210d] Xét các số thực dương x, y thỏa mãn log31 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y
A Pmin= 18
√
11 − 29
21 B Pmin = 9
√
11+ 19
9 . C Pmin = 9
√
11 − 19
9 . D Pmin= 2
√
11 − 3
Câu 110. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
Câu 111. Khối đa diện đều loại {3; 3} có số mặt
Câu 112. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 113. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 114. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 115. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 116. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 3ac
3b+ 2ac
3b+ 3ac
3b+ 2ac
c+ 3 .
Câu 117. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
B Hàm số nghịch biến trên khoảng (−2; 1).
C Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
D Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
Câu 118. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
A Phần thực là 4, phần ảo là −1 B Phần thực là −1, phần ảo là −4.
C Phần thực là −1, phần ảo là 4 D Phần thực là 4, phần ảo là 1.
Câu 119. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
√
√ 6
a
√ 6
2 .
Câu 120. [1] Tập xác định của hàm số y= 2x−1là
A. D = R \ {1} B. D = (0; +∞) C. D = R D. D = R \ {0}
Câu 121. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A. 3
√ 3
√ 3
√ 3
12.
Trang 10Câu 122. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Một hình chóp tam giác và một hình chóp tứ giác.
B Hai hình chóp tam giác.
C Hai hình chóp tứ giác.
D Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 123. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞
f(x)
g(x) = a
C lim
x→ +∞[ f (x)g(x)]= ab D lim
x→ +∞[ f (x)+ g(x)] = a + b
Câu 124. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 125. Tìm giới hạn lim2n+ 1
n+ 1
Câu 126. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
A m < 0 B m < 0 ∨ m > 4 C m < 0 ∨ m= 4 D m ≤ 0.
Câu 127. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
15
a3√5
3√
3√ 6
3 .
Câu 128 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A Tứ diện đều B Thập nhị diện đều C Bát diện đều D Nhị thập diện đều.
Câu 129. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
A. 2
√
3
√
Câu 130. Thể tích của khối lập phương có cạnh bằng a
√ 2
A 2a3
√
3√ 2
2
HẾT