1. Trang chủ
  2. » Tất cả

Đề ôn tập toán thptqg 4 (640)

13 2 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 4 (640)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 13
Dung lượng 155,49 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 11 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [1 c] Cho a là số thực dương Giá trị của biểu thức a 4 3 3√ a2 bằng A a 5 8 B a 5 3 C a 7 3 D a 2 3 Câu 2[.]

Trang 1

Free LATEX

(Đề thi có 11 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2 bằng

Câu 2. [2] Cho hàm số y= log3(3x + x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 3. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

1

2.

Câu 4. Cho lăng trụ đứng ABC.A0B0C0 có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A. a

3√

6

3√

3√ 6

2a3√6

3 .

Câu 5. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a√6

a√6

a√3

2 .

A F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

B F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

C Cả ba đáp án trên.

D Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

Câu 7. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

A P= −1+ i

√ 3

√ 3

xy+ x + 2y + 17

thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 10. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

Câu 11. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos 2 x

lần lượt là

Câu 12. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

3S h. B V = 1

2S h. C V = S h D V = 3S h

giữa hai đường thẳng BD và S C bằng

A. a

6

a√6

a√6

√ 6

Trang 2

Câu 14. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 1

e. B M= e, m = 1 C M = e, m = 0 D M = 1

e, m = 0

ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 120.(1, 12)3

(1, 12)3− 1 triệu. B m = 100.(1, 01)3

3 triệu.

C m = 100.1, 03

(1, 01)3− 1 triệu.

A.

3

3

√ 3

√ 3

12.

rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 19. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



Câu 20. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 22. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3

abằng

A −1

1

3 Thể tích khối nón đã cho là

A V = πa3

√ 3

2 . B V = πa3

√ 6

6 . C V = πa3

√ 3

3 . D V = πa3

√ 3

6 .

Câu 24. [1-c] Giá trị biểu thức log236 − log2144 bằng

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3√6

a3√2

a3√3

48 .

Trang 3

Câu 27. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A.

3

2 e

π

2e

π

√ 2

2 e

π

4

2 2n2+ 1 bằng?

A. 1

1

1

A Trục thực.

B Hai đường phân giác y= x và y = −x của các góc tọa độ

C Đường phân giác góc phần tư thứ nhất.

D Trục ảo.

A un= n2+ n + 1

(n+ 1)2 B un = n2− 2

5n − 3n2 C un = n2− 3n

n2 D un = 1 − 2n

5n+ n2

A. D = R \ {0} B. D = R C. D = (0; +∞) D. D = R \ {1}

thẳng S B bằng

A. a

a√3

a

A (−

x→5

x2− 12x+ 35

25 − 5x

A −2

2

Câu 35. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

A Nếu

Z

f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R

B Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

C Nếu

Z

f(x)dx=

Z

g(x)dx thì f (x) , g(x), ∀x ∈ R

D Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

Câu 37. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng

A T = e + 3 B T = 4 + 2

e. C T = e + 2

e. D T = e + 1

Câu 38. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

1

2.

Trang 4

Câu 39. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2

f(x3)−√ 6

3x+ 1 Tính

1 0

f(x)dx

2n2+ 3n + 1 bằng

Câu 42. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

A. 5

7

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

8a

2a

a

9.

2− 1 3n6+ n4

3.

Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 46. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

A 6 đỉnh, 6 cạnh, 4 mặt B 4 đỉnh, 8 cạnh, 4 mặt C 3 đỉnh, 3 cạnh, 3 mặt D 4 đỉnh, 6 cạnh, 4 mặt.

A y0 = 1

0 = 1

2x ln x. C y

0 = 2x ln 2 D y0 = 2x ln x

Câu 49. [1] Biết log6 √a= 2 thì log6abằng

3|x−1| = 3m − 2 có nghiệm duy nhất?

A Số đỉnh của khối chóp bằng số cạnh của khối chóp.

B Số đỉnh của khối chóp bằng số mặt của khối chóp.

C Số cạnh của khối chóp bằng số mặt của khối chóp.

D Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

Câu 53. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Trang 5

Câu 54. Cho hai đường thẳng phân biệt d và d đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 55. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

x→−1(x2− x+ 7) bằng?

Câu 58. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

9

23

5

16.

cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

A. a

3√

3

3√ 3

a3

3 .

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Chỉ có (I) đúng B Cả hai đều đúng C Cả hai đều sai D Chỉ có (II) đúng.

tích của khối chóp S ABCD là

A. a

3√

3

a3√ 3

a3

3√ 3

Câu 63. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 64. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

"

2;5 2

! C. " 5

2; 3

!

Câu 65. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 66. [1] Giá trị của biểu thức log √31

10 bằng

1

Trang 6

Câu 68. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3

√ 2

a3

√ 6

a3

√ 6

18 .

Câu 69. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

A y0 = 1 + ln x B y0 = 1 − ln x C y0 = x + ln x D y0 = ln x − 1

Câu 71. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

2016

4035

2018.

Z 2 1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

B F(x)= G(x) trên khoảng (a; b)

C Cả ba câu trên đều sai.

D F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

Câu 74. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

C lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b) D lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b)

Câu 75. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

A Hình lăng trụ tứ giác đều là hình lập phương.

B Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

C Hình lăng trụ đứng là hình lăng trụ đều.

D Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 2016

Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

3√

3

4a3√3

a3√3

8a3√3

9 .

Trang 7

Câu 80. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

Câu 81. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

P= (2x2+ y)(2y2+ x) + 9xy là

Câu 84. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

ứng sẽ:

A Số mặt của khối chóp bằng 2n+1.

B Số đỉnh của khối chóp bằng 2n+ 1

C Số mặt của khối chóp bằng số cạnh của khối chóp.

D Số cạnh của khối chóp bằng 2n.

A.

Z

f(x)dx

!0

Z

f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C

C.

Z

f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C D. Z k f(x)dx= kZ f(x)dx, k là hằng số

rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 90. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 1 B f0(0)= 10 C f0(0)= ln 10 D f0(0)= 1

ln 10.

Câu 91. Giá trị cực đại của hàm số y = x3− 3x+ 4 là

Câu 92. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 93. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Trang 8

Câu 94 Phát biểu nào sau đây là sai?

n = 0

C lim 1

Câu 95. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 96. Khối đa diện đều loại {3; 3} có số đỉnh

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. a

2a

a√2

a

3.

đến (S AB) bằng

A. a

6

√ 6

A Với mọi x ∈ [a; b], ta có F0(x)= f (x)

B Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

C Với mọi x ∈ (a; b), ta có f0(x)= F(x)

D Với mọi x ∈ [a; b], ta có F0(x)= f (x)

A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 103. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3√ 3

a3

a3√ 3

8 .

A Bát diện đều B Nhị thập diện đều C Thập nhị diện đều D Tứ diện đều.

Trang 9

Câu 106. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

1

4.

A.

Z

u0(x)

u(x)dx= log |u(x)| + C

B F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

C F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

D Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

Câu 108. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

5

ABC.A0

B0C0 là

A. a

3√

3

a3√ 3

3

3 .

Câu 110. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

2√e.

vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

3√

6

a3√ 3

a3√ 3

a3√ 6

12 .

A Hàm số đồng biến trên khoảng 1

3; 1

!

3

!

C Hàm số nghịch biến trên khoảng 1

3; 1

! D Hàm số nghịch biến trên khoảng (1;+∞)

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. 11a

2

a2√ 5

a2√ 7

a2√ 2

4 .

Khoảng cách từ A đến mặt phẳng (S BC) bằng

cách giữa hai đường thẳng S B và AD bằng

A a

√ 2

√ 2

3 .

Trang 10

Câu 118. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

A. 5

2.

x2 là

A y0 = 1 − 2 log 2x

x3 B y0 = 1 − 4 ln 2x

2x3ln 10 . C y

0 = 1 − 2 ln 2x

x3ln 10 . D y

2x3ln 10.

lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

A. sin n

1

1

n+ 1

n .

− 4 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (0; 2) B Hàm số đồng biến trên khoảng (0;+∞)

C Hàm số đồng biến trên khoảng (0; 2) D Hàm số nghịch biến trên khoảng (−∞; 2).

3n+ 1 bằng?

A. 1

2

2

3.

3x

3− 2x2+ 3x − 1

(I)

Z

( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Cả hai câu trên sai B Chỉ có (II) đúng C Cả hai câu trên đúng D Chỉ có (I) đúng.

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

A. 1

Trang 11

Câu 130. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1 − 2e

4 − 2e. B m= 1+ 2e

4e+ 2. C m=

1 − 2e 4e+ 2. D m=

1+ 2e

4 − 2e.

HẾT

Trang 12

-ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1

Trang 13

70 A 71 B

Ngày đăng: 01/04/2023, 14:10

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN