Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc B̂AD = 60◦, S O vuông góc với mặt đ[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A. a
√
57
a√57
2a√57
√ 57
Câu 2. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 3. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là 3, phần ảo là −4 B Phần thực là −3, phần ảo là 4.
C Phần thực là −3, phần ảo là −4 D Phần thực là 3, phần ảo là 4.
Câu 4. Tính lim 2n
2− 1 3n6+ n4
Câu 5. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
Câu 6. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 2ac
3b+ 3ac
3b+ 3ac
3b+ 2ac
c+ 2 .
Câu 7. Hàm số y= x3
− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 8. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
3
9
4.
Câu 9. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t) = −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 10. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 11. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 1 B M= e, m = 1
e. C M = 1
e, m = 0 D M = e, m = 0
Câu 12. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 13. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 14. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Trang 2Câu 15. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 16 Hình nào trong các hình sau đây không là khối đa diện?
Câu 17. Biểu thức nào sau đây không có nghĩa
√
√
−1
Câu 18. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. 5a
3√
3
2a3√ 3
a3√ 3
4a3√ 3
3 .
Câu 19. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 20. Khối đa diện đều loại {4; 3} có số cạnh
Câu 21. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 22. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
9
2.
Câu 23. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
2 .
Câu 24. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√3
a3√3
a3
√ 2
12 .
Câu 25. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 26. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Câu 27. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 28. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 29. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 30. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4
2x+ 12 log2
2x log2 8
x
Trang 3Câu 31. [2] Đạo hàm của hàm số y = x ln x là
A y0 = 1 − ln x B y0 = ln x − 1 C y0 = x + ln x D y0 = 1 + ln x
Câu 32. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = 120.(1, 12)3
(1, 12)3− 1 triệu. B m = (1, 01)3
(1, 01)3− 1 triệu.
C m = 100.1, 03
3 triệu.
Câu 33. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 34. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
Câu 35. [1] Tập xác định của hàm số y= 2x−1là
A. D = R \ {1} B. D = R \ {0} C. D = (0; +∞) D. D = R
Câu 36. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 37. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
1
e3
Câu 38. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
√ 2
Câu 39. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 40. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
2.
Câu 41. Cho
Z 2 1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 42. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A. a
3√
3
a3
√ 3
2√
3√ 2
24 .
Câu 43. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 44. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Trang 4Câu 45. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. 3a
3a√38
3a√58
a√38
29 .
Câu 46. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
23
9
5
16.
Câu 47. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
A. a
3
a3
3
24.
Câu 48. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 20, 128 triệu đồng B 50, 7 triệu đồng C 70, 128 triệu đồng D 3, 5 triệu đồng.
Câu 49. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a
√ 39
a
√ 39
a
√ 39
16 .
Câu 50. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2√3 Thể tích khối nón đã cho là
A V = πa3
√ 3
2 . B V = πa3
√ 3
6 . C V = πa3
√ 6
6 . D V = πa3
√ 3
3 .
Câu 51. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 52. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 53. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 54. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 55. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. a
8a
2a
5a
9 .
Câu 56. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A a3
√
3√ 5
a3√6
a3√15
3 .
Trang 5Câu 57. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 58 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 B.
Z ( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx
C.
Z
f(x)g(x)dx=Z f(x)dx
Z
Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx
Câu 59. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A. " 2
5;+∞
!
"
−2
3;+∞
!
5
#
3
#
Câu 60. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A. a
√
2
√
√
√ 2
4 .
Câu 61. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A. a
3√
2
3√
3√ 2
a3√3
6 .
Câu 62. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 63. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
A. 7
5
Câu 64. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
2
√
a2+ b2 C. ab
a2+ b2 D. √ 1
a2+ b2
Câu 65. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 66. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 67. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 68. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 69. [4-1213d] Cho hai hàm số y = x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y = |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Trang 6Câu 70. Dãy số nào sau đây có giới hạn khác 0?
A. √1
n+ 1
sin n
1
n.
Câu 71. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Hai đường phân giác y= x và y = −x của các góc tọa độ
B Trục ảo.
C Đường phân giác góc phần tư thứ nhất.
D Trục thực.
Câu 72. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu f (x)= g(x) + 1, ∀x ∈ R thì
Z
f0(x)dx=
Z
g0(x)dx
B Nếu
Z
f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R
C Nếu
Z
f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R
D Nếu
Z
f(x)dx=
Z
g(x)dx thì f (x) , g(x), ∀x ∈ R
Câu 73. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A a
√
√ 57
a√57
a√57
19 .
Câu 74. Khối đa diện đều loại {3; 4} có số mặt
Câu 75. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
A − 1
1
e.
Câu 76. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
√
√ 2
Câu 77. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 78. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 79. Hàm số y= x + 1
x có giá trị cực đại là
Câu 80. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 81 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C B. Z f(x)dx
!0
= f (x)
C.
Z
k f(x)dx= k
Z
f(x)dx, k là hằng số D.
Z
f(x)dx= F(x)+C ⇒
Z
f(u)dx = F(u)+C
Câu 82. Thể tích của khối lập phương có cạnh bằng a
√ 2
3√ 2
3√
2
Trang 7Câu 83. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Tăng lên n lần B Tăng lên (n − 1) lần C Giảm đi n lần D Không thay đổi.
Câu 84. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
A lim un= 1
C Dãy số unkhông có giới hạn khi n →+∞ D lim un= 0
Câu 85. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm
đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 86 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
B Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
C Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
D Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
Câu 87. Khối đa diện đều loại {3; 4} có số cạnh
Câu 88. Cho
Z 1 0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
1
2.
Câu 89. [1] Giá trị của biểu thức log 1
3
√ 10 bằng
A −1
1
3.
Câu 90. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 91. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
a3
√ 5
a3
√ 5
a3
√ 5
4 .
Câu 92. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 93. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3
a3√3
a3√3
12 .
Câu 94 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
xαdx= xα+1
α + 1+ C, C là hằng số. B.
Z 0dx = C, C là hằng số
C.
Z
dx = x + C, C là hằng số D.
Z 1
xdx= ln |x| + C, C là hằng số
Trang 8Câu 95. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x) − g(x)]= a − b B lim
x→ +∞[ f (x)g(x)]= ab
C lim
x→ +∞[ f (x)+ g(x)] = a + b D lim
x→ +∞
f(x) g(x) = a
b.
Câu 96. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
A.
√
√
Câu 97. Tính limcos n+ sin n
n2+ 1
Câu 98. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
Câu 99. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = −ey
− 1 C xy0 = ey+ 1 D xy0 = ey
− 1
Câu 100. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A.
√
√
√
√ 13
13 .
Câu 101. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
7
a2
√ 2
11a2
a2
√ 5
16 .
Câu 102. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 103. [1] Tính lim 1 − n
2 2n2+ 1 bằng?
A. 1
1
1
3.
Câu 104. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
A. 1
√ 5
Câu 105. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −1
2;+∞
!
2
!
2;+∞
!
2
!
Câu 106. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 107. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
6
a3√ 2
a3√ 6
a3√ 6
6 .
Câu 108. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Trang 9Câu 109. Dãy số nào sau đây có giới hạn là 0?
A. 4
e
!n
3
!n
3
!n
3
!n
Câu 110. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 111. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là
Câu 112 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
C Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
Câu 113. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3
√ 6
a3
√ 6
a3
√ 3
24 .
Câu 114. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Hai hình chóp tam giác.
B Một hình chóp tam giác và một hình chóp tứ giác.
C Hai hình chóp tứ giác.
D Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 115. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
√
3, 38
Câu 116. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
A. 67
Câu 117. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
√
Câu 118. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 119. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 120. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2
f(x3) − √ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 121. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. 4a
3√
3
a3√3
8a3√3
8a3√3
9 .
Trang 10Câu 122. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 123. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Câu 124. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A. a
√
2
a√2
√
√ 2
Câu 125 Phát biểu nào sau đây là sai?
A lim 1
n = 0
Câu 126. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 127. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 128. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3
a3√ 5
a3√ 15
5 .
Câu 129 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 130. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
2.
HẾT