1. Trang chủ
  2. » Tất cả

Đề ôn tập toán thptqg 2 (567)

12 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 2 (567)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2019
Thành phố Việt Nam
Định dạng
Số trang 12
Dung lượng 149,13 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [2 c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn hoàn nợ cho ngâ[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 25 triệu đồng B 3, 03 triệu đồng C 2, 20 triệu đồng D 2, 22 triệu đồng.

Câu 2. Khối chóp ngũ giác có số cạnh là

Câu 3. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

3

a3

√ 3

a3

√ 3

12 .

Câu 4. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2 bằng

Câu 5. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

Câu 6. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3√ 6

a3√ 6

a3√ 2

6 .

Câu 7. Biểu thức nào sau đây không có nghĩa

A. −3

√ 2)0

Câu 8. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 9. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Một khối chóp tam giác, một khối chóp ngữ giác.

B Một khối chóp tam giác, một khối chóp tứ giác.

C Hai khối chóp tam giác.

D Hai khối chóp tứ giác.

Câu 10. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 11. Khối đa diện đều loại {3; 4} có số mặt

Trang 2

Câu 12. [1] Tập xác định của hàm số y= 2x−1

A. D = R \ {0} B. D = R \ {1} C. D = R D. D = (0; +∞)

Câu 13. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

3√ 3

3 .

Câu 14. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 0 B M= 1

e, m = 0 C M = e, m = 1

e. D M = e, m = 1

Câu 15. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Cả hai đều đúng B Chỉ có (II) đúng C Chỉ có (I) đúng D Cả hai đều sai.

Câu 16. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 17. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

Câu 18. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 19. [1] Tính lim1 − 2n

3n+ 1 bằng?

A −2

1

2

3.

Câu 20. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 21. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 22. Dãy số nào sau đây có giới hạn là 0?

A. 5

3

!n

e

!n

3

!n

3

!n

Câu 23. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

2

a3√3

a3√3

3√ 3

Câu 24. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 25. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Trang 3

Câu 26. Hàm số f có nguyên hàm trên K nếu

A f (x) có giá trị lớn nhất trên K B f (x) liên tục trên K.

Câu 27. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 28. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Hai hình chóp tam giác.

B Hai hình chóp tứ giác.

C Một hình chóp tam giác và một hình chóp tứ giác.

D Một hình chóp tứ giác và một hình chóp ngũ giác.

Câu 29. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số đồng biến trên khoảng (1; 2).

C Hàm số nghịch biến trên khoảng (0; 1) D Hàm số nghịch biến trên khoảng (−∞; 0).

Câu 30. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 31. Tính limcos n+ sin n

n2+ 1

Câu 32. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 33. Tính lim 5

n+ 3

Câu 34. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 35. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

x→af(x)= f (a)

C lim

x→a + f(x)= lim

x→a − f(x)= +∞ D lim

x→a + f(x)= lim

x→a − f(x)= a

Câu 36. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. a

a√2

a

2a

3 .

Câu 37. Bát diện đều thuộc loại

Câu 38. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Trang 4

Câu 39. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

C Phần thực là −3, phần ảo là −4 D Phần thực là 3, phần ảo là 4.

Câu 40. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 41. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

A 3 − 4

√ 2

Câu 42. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là

3, 4

3, 38 D 8, 16, 32.

Câu 43. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

3

√ 3

√ 3

2 .

Câu 44 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aα+β= aα.aβ B aαβ = (aα

C. a

α

aβ = aα D aαbα = (ab)α

Câu 45. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = a3

3

2 . B V = 6a3 C V = 3a3

√ 3

2 . D V = 3a3√

3

Câu 46. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

a3

a3

3

Câu 47. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 48. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin 2 x+ 2cos 2 x

lần lượt là

A 2 và 2

2 và 3

Câu 49. [2] Đạo hàm của hàm số y = x ln x là

A y0 = 1 + ln x B y0 = 1 − ln x C y0 = ln x − 1 D y0 = x + ln x

Câu 50. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A. 12

17

Câu 51. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 52. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 53. Thể tích của khối lập phương có cạnh bằng a

√ 2

3√ 2

3√ 2

Trang 5

Câu 54. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 55. Hàm số y= x + 1

x có giá trị cực đại là

Câu 56. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Cả hai câu trên sai B Cả hai câu trên đúng C Chỉ có (I) đúng D Chỉ có (II) đúng.

Câu 57. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 58. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2

f(x3)−√ 6

3x+ 1 Tính

Z 1 0

f(x)dx

Câu 59. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 60. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 61. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3√

2

2√

3√ 3

a3√ 3

24 .

Câu 62 Phát biểu nào sau đây là sai?

A lim √1

nk = 0 với k > 1

Câu 63. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

A. 5

7

2.

Câu 64. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

Câu 65. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A F(x)= G(x) trên khoảng (a; b)

B G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

D Cả ba câu trên đều sai.

Trang 6

Câu 66. Khối đa diện đều loại {3; 3} có số mặt

Câu 67. Khẳng định nào sau đây đúng?

A Hình lăng trụ tứ giác đều là hình lập phương.

B Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

C Hình lăng trụ đứng là hình lăng trụ đều.

D Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

Câu 68. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 69. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 4a

3

2a3√3

4a3√3

2a3

3 .

Câu 70. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số đỉnh của khối chóp bằng số cạnh của khối chóp.

B Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

C Số cạnh của khối chóp bằng số mặt của khối chóp.

D Số đỉnh của khối chóp bằng số mặt của khối chóp.

Câu 71. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 3

3 . B V = πa3

√ 6

6 . C V = πa3

√ 3

6 . D V = πa3

√ 3

2 .

Câu 72. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 73. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

A. 3

Câu 74. [1] Tính lim 1 − n

2 2n2+ 1 bằng?

A. 1

1

1

3.

Câu 75. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 76. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A. 5

13

√ 2

Câu 77. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Năm hình chóp tam giác đều, không có tứ diện đều.

B Một tứ diện đều và bốn hình chóp tam giác đều.

C Bốn tứ diện đều và một hình chóp tam giác đều.

D Năm tứ diện đều.

Trang 7

Câu 78. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey

Câu 79. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 8a

3√

3

4a3√ 3

8a3√ 3

a3√ 3

9 .

Câu 80. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a√6

a√3

a√6

3 .

Câu 81. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối bát diện đều C Khối tứ diện đều D Khối lập phương.

Câu 82. Khối đa diện đều loại {3; 3} có số cạnh

Câu 83. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 84. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

A Không có câu nào

sai

Câu 85. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

A. 5

Câu 86. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 87. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 88. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 89. [1] Đạo hàm của làm số y = log x là

0 = 1

0 = ln 10

0 = 1

xln 10.

Câu 90. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

2 .

Trang 8

Câu 91. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

A. a

3

a3√ 3

a3√ 3

3

Câu 92. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

A 8

Câu 93. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 94. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 95. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2

− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019

Câu 96. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

Câu 97 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

1

xdx= ln |x| + C, C là hằng số B.

Z 0dx = C, C là hằng số

C.

Z

dx = x + C, C là hằng số D.

Z

xαdx= xα+1

α + 1+ C, C là hằng số.

Câu 98. Tính giới hạn lim2n+ 1

3n+ 2

A. 2

3

1

2.

Câu 99. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 100. Khối đa diện đều loại {4; 3} có số cạnh

Câu 101. Cho

Z 2 1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 102. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 103 Hình nào trong các hình sau đây không là khối đa diện?

Câu 104. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1 − 2e

4 − 2e. B m= 1+ 2e

4 − 2e. C m= 1+ 2e

4e+ 2. D m=

1 − 2e 4e+ 2.

Câu 105. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Trang 9

Câu 106. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3

− z

A P= −1 − i

√ 3

2 . B P= −1+ i

√ 3

Câu 107. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 108. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 109. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

Câu 110. Dãy số nào có giới hạn bằng 0?

A un= 6

5

!n

B un = −2

3

!n C un = n2− 4n D un = n3− 3n

n+ 1 .

Câu 111. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

A.

"

2;5

2

!

B. " 5

2; 3

!

Câu 112. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 113. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

Câu 114. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 115. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 116. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

√ 3

1

3

2.

Câu 117. [2] Tập xác định của hàm số y= (x − 1)1

A. D = (−∞; 1) B. D = R \ {1} C. D = R D. D = (1; +∞)

Câu 118. [1] Biết log6 √a= 2 thì log6abằng

Câu 119. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A a

√ 3

a√3

2a√3

2 .

Câu 120. Cho

Z 1 0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

A. 1

1

Câu 121. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Giảm đi n lần B Tăng lên (n − 1) lần C Tăng lên n lần D Không thay đổi.

Trang 10

Câu 122. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 123. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 124. [3-1214d] Cho hàm số y= x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

A 2

√ 6

Câu 125. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 126. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

0 = 2x ln x C y0 = 2x ln 2 D y0 = 1

2x ln x.

Câu 127. Tìm giới hạn lim2n+ 1

n+ 1

Câu 128. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

1

2e3

Câu 129. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 130. Tính giới hạn lim

x→ +∞

2x+ 1

x+ 1

HẾT

Ngày đăng: 01/04/2023, 13:30

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN