1. Trang chủ
  2. » Tất cả

Đề ôn tập toán thptqg 2 (281)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 2 (281)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 148,27 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

n2+ 2

A Trục ảo.

B Hai đường phân giác y= x và y = −x của các góc tọa độ

C Đường phân giác góc phần tư thứ nhất.

D Trục thực.

Câu 4. Khối đa diện đều loại {4; 3} có số mặt

Câu 5. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

A. 1

1

2.

Câu 6. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 1 B M= e, m = 0 C M = e, m = 1

e. D M = 1

e, m = 0

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 < m ≤ 3

3

9

4.

0

x

4+ 2√x+ 1dx =

a

d+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị

P= a + b + c + d bằng?

cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√5

a3√5

a3√5

4 .

Câu 10. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



lên?

Trang 2

Câu 12. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1

2x3ln 10. B y

0 = 1 − 2 ln 2x

x3ln 10 . C y

0 = 1 − 2 log 2x

x3 D y0 = 1 − 4 ln 2x

2x3ln 10 .

Câu 13. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối bát diện đều B Khối lập phương C Khối tứ diện đều D Khối 12 mặt đều.

hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A. 2a

3√

3

a3√3

3√

3√ 3

6 .

A aαβ = (aα

B aα+β= aα.aβ

α

aβ = aα D aαbα = (ab)α

x→ +∞

x+ 1 4x+ 3 bằng

A. 1

1

Câu 19. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

A Với mọi x ∈ [a; b], ta có F0(x)= f (x)

B Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

C Với mọi x ∈ [a; b], ta có F0(x)= f (x)

D Với mọi x ∈ (a; b), ta có f0(x)= F(x)

A.

Z

f(x)dx

!0

= f (x)

B Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

C F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

D Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

Câu 23. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

A m = ±√3 B m= ±3 C m= ±√2 D m= ±1

Câu 24. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

C lim un= 1

Câu 25. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Trang 3

Câu 26 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

A Nhị thập diện đều B Bát diện đều C Tứ diện đều D Thập nhị diện đều.

A Hàm số nghịch biến trên khoảng (0; 1) B Hàm số nghịch biến trên khoảng (−∞; 0).

C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số đồng biến trên khoảng (1; 2).

x→−∞

4x+ 1

x+ 1 bằng?

Câu 29. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

A −5

4 < m < 0 B m ≤ 0 C m ≥ 0 D m > −5

4.

thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A. a

2

a

√ 2

Câu 32. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

1

2e3

Câu 33. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

√ 3

2 e

π

√ 2

2 e

π

2e

π

3

Câu 34. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 35. Khối đa diện đều loại {3; 5} có số đỉnh

A m > 1

1

1

1

4.

lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 38. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

x→3

x2− 9

x −3

ứng sẽ:

A Tăng gấp 4 lần B Tăng gấp 6 lần C Tăng gấp đôi D Tăng gấp 8 lần.

Trang 4

Câu 41. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 3

6 . B V = πa3

√ 6

6 . C V = πa3

√ 3

3 . D V = πa3

√ 3

2 .

A Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

B Hình lăng trụ tứ giác đều là hình lập phương.

C Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

D Hình lăng trụ đứng là hình lăng trụ đều.

Câu 43. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

là:

Câu 45. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

2n2+ 3n + 1 bằng

√ 3i lần lượt l

A Phần thực là

2 − 1, phần ảo là

2, phần ảo là 1 −

√ 3

C Phần thực là 1 −

2, phần ảo là −

2 − 1, phần ảo là −

√ 3

A. a

3√

2

a3

√ 2

a3

√ 2

a3

√ 2

4 .

phẳng ACC0A0bằng

a2+ b2 B. √ ab

2

a2+ b2 D. ab

a2+ b2

đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 6

a3√ 2

a3√ 3

24 .

A.

Z

xαdx= α + 1xα+1 + C, C là hằng số B.

Z 0dx = C, C là hằng số

C.

Z

dx = x + C, C là hằng số D.

Z 1

xdx= ln |x| + C, C là hằng số

Trang 5

Câu 52. Hàm số nào sau đây không có cực trị

A y = x −2

2x+ 1. B y= x3− 3x. C y= x +

1

x. D y= x4

− 2x+ 1

x→5

x2− 12x+ 35

25 − 5x

A −2

5.

Câu 54. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. −∞;1

2

!

2;+∞

!

2;+∞

!

2

!

Câu 58. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là

A M = e2− 2; m = e−2+ 2 B M = e−2+ 2; m = 1

C M = e−2− 2; m= 1 D M = e−2+ 1; m = 1

A. D = R B. D = R \ {0} C. D = (0; +∞) D. D = R \ {1}

Câu 60. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và √3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

√ 3

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

A 6 đỉnh, 6 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 5 mặt D 5 đỉnh, 9 cạnh, 6 mặt.

A Số mặt của khối chóp bằng số cạnh của khối chóp.

B Số đỉnh của khối chóp bằng 2n+ 1

C Số cạnh của khối chóp bằng 2n.

D Số mặt của khối chóp bằng 2n+1.

3|x−1| = 3m − 2 có nghiệm duy nhất?

Trang 6

Câu 66. Biểu thức nào sau đây không có nghĩa

−1

x − m nghịch biến trên khoảng (0;+∞)?

Câu 68. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

2− 2n3+ 1 3n3+ 2n2+ 1

-2

3.

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞

f(x)

g(x) = a

C lim

x→ +∞[ f (x)+ g(x)] = a + b D lim

x→ +∞[ f (x) − g(x)]= a − b

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 9

11+ 19

9 . B Pmin = 2

11 − 3

3 . C Pmin = 18

11 − 29

21 D Pmin= 9

11 − 19

2− 1 3n6+ n4

3.

A Phần thực là 3, phần ảo là 4 B Phần thực là −3, phần ảo là −4.

C Phần thực là 3, phần ảo là −4 D Phần thực là −3, phần ảo là 4.

A Số đỉnh của khối chóp bằng số mặt của khối chóp.

B Số đỉnh của khối chóp bằng số cạnh của khối chóp.

C Số cạnh của khối chóp bằng số mặt của khối chóp.

D Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

A lim 1

nk = 0 với k > 1 B lim qn= 1 với |q| > 1

C lim √1

Trang 7

Câu 79. Khối đa diện đều loại {5; 3} có số đỉnh

A Tăng lên (n − 1) lần B Giảm đi n lần C Không thay đổi D Tăng lên n lần.

Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 82. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga

3

abằng

A. 1

1

Câu 83. [1] Biết log6 √a= 2 thì log6abằng

Z 2

1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 85. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

√ 3

3

2.

A un= 6

5

!n

B un = n2− 4n C un = n3− 3n

n+ 1 . D un = −2

3

!n

log4(x2+ y2)?

Câu 90. Tìm giá trị lớn chất của hàm số y= x3

− 2x2− 4x+ 1 trên đoạn [1; 3]

27.

(e)= 2m + 1

A m = 1+ 2e

4e+ 2. B m=

1 − 2e 4e+ 2. C m=

1 − 2e

4 − 2e. D m= 1+ 2e

4 − 2e.

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

Câu 93. Khối đa diện đều loại {3; 3} có số đỉnh

A log2a= − loga2 B log2a= 1

log2a. C log2a= 1

loga2. D log2a= loga2

Trang 8

Câu 95. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3

− z

A P= −1 − i

√ 3

√ 3

− 3x2+ 4 đồng biến trên:

A. n+ 1

1

sin n

1

n.

3n+ 2

1

2

3.

Câu 100. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos2x

lần lượt là

A 2√2 và 3 B 2 và 3 C 2 và 2√2 D. √2 và 3

Câu 101. [1] Giá trị của biểu thức log √31

10 bằng

1

3.

A.

Z

f(x)g(x)dx=Z f(x)dx

Z

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0

C.

Z

( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx D.

Z ( f (x) − g(x))dx=

Z

f(x)dx −

Z g(x)dx

của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3

√ 3

a3

√ 3

a3

√ 3

36 .

biến d thành d0?

3|x−2| = m − 2 có nghiệm

Câu 109. Cho các dãy số (un) và (vn) và lim un = a, lim vn= +∞ thì limun

vn bằng

Trang 9

Câu 110. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i.

5

Câu 111. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

ln 2

2 .

Câu 112. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A.

√ 13

13 .

A V = 1

2S h. B V = 1

3S h. C V = S h D V = 3S h

cách giữa hai đường thẳng BD và S C bằng

A. a

6

a√6

a√6

√ 6

đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3

a3√3

a3√3

8 .

Câu 117. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 3, 5 triệu đồng B 20, 128 triệu đồng C 70, 128 triệu đồng D 50, 7 triệu đồng.

tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

thẳng BB0và AC0bằng

a2+ b2 B. √ 1

2√a2+ b2 D. ab

a2+ b2

Câu 122. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối 20 mặt đều C Khối bát diện đều D Khối 12 mặt đều.

Câu 123. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) B lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b)

C lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b) D lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

Trang 10

Câu 124. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Hai hình chóp tam giác.

B Một hình chóp tứ giác và một hình chóp ngũ giác.

C Một hình chóp tam giác và một hình chóp tứ giác.

D Hai hình chóp tứ giác.

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

a3

a3

3

Câu 126. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 127. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

√ 2

A 2a3

3√ 2

3 .

45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

5

a3

√ 15

a3

a3

√ 15

5 .

HẾT

Trang 11

-ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1

Trang 12

69 D 70 A

Ngày đăng: 01/04/2023, 13:18