Free LATEX (Đề thi có 11 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Phát biểu nào sau đây là sai? A lim 1 √ n = 0 B lim qn = 1 với |q| > 1 C lim 1 nk = 0 với k > 1 D lim un =[.]
Trang 1Free LATEX
(Đề thi có 11 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1 Phát biểu nào sau đây là sai?
A lim √1
C lim 1
nk = 0 với k > 1 D lim un= c (Với un = c là hằng số)
Câu 2. Hàm số y= x + 1
x có giá trị cực đại là
Câu 3. Tính lim 5
n+ 3
Câu 4. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 5. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
A Phần thực là 4, phần ảo là −1 B Phần thực là −1, phần ảo là −4.
C Phần thực là −1, phần ảo là 4 D Phần thực là 4, phần ảo là 1.
Câu 6. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3√ 3
a3
a3√ 3
12 .
Câu 7 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
f(x)g(x)dx=Z f(x)dx
Z
Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx
C.
Z
k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 D.
Z ( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx
Câu 8. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
Câu 9. Dãy số nào sau đây có giới hạn là 0?
A un= 1 − 2n
5n+ n2 B un = n2− 2
5n − 3n2 C un = n2+ n + 1
(n+ 1)2 D un = n2− 3n
n2
Câu 10. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số cạnh của khối chóp bằng 2n.
B Số đỉnh của khối chóp bằng 2n+ 1
C Số mặt của khối chóp bằng số cạnh của khối chóp.
D Số mặt của khối chóp bằng 2n+1.
Câu 11. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 12. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3√ 6
a3√ 3
a3√ 6
8 .
Câu 13. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Trang 2Câu 14. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
A. a
3
a3
3
12.
Câu 15. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
A. 67
Câu 16. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 17. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2√3 Thể tích khối nón đã cho là
A V = πa3
√ 3
6 . B V = πa3
√ 3
3 . C V = πa3
√ 3
2 . D V = πa3
√ 6
6 .
Câu 18. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 19. Bát diện đều thuộc loại
Câu 20. [2-c] Cho hàm số f (x) = 9x
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
A. 1
Câu 21. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 9 cạnh, 5 mặt B 6 đỉnh, 6 cạnh, 6 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 6 mặt.
Câu 22. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. 2a
√
57
a√57
a√57
√ 57
Câu 23. Tính lim 2n
2− 1 3n6+ n4
Câu 24 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 22 triệu đồng B 2, 25 triệu đồng C 2, 20 triệu đồng D 3, 03 triệu đồng.
Câu 25. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= 1
loga2. B log2a= 1
log2a. C log2a= loga2 D log2a= − loga2
Câu 26. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 27. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
√
Trang 3Câu 28. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 29. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 30. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = (1; +∞) B. D = (−∞; 1) C. D = R \ {1} D. D = R
Câu 31. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là
A. a
3√
3
a3√ 3
a3
3√ 3
Câu 32. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 33. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 34. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 35. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. a
√
3
2a√3
a
√ 3
√ 3
Câu 36. Dãy số nào sau đây có giới hạn là 0?
A. 4
e
!n
3
!n
3
!n
3
!n
Câu 37. [1] Tính lim 1 − n
2 2n2+ 1 bằng?
1
1
3.
Câu 38. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng 1
3; 1
! B Hàm số nghịch biến trên khoảng (1;+∞)
C Hàm số nghịch biến trên khoảng 1
3; 1
! D Hàm số nghịch biến trên khoảng −∞;1
3
!
Câu 39. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 40. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
Câu 41. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
Trang 4(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A Chỉ có (II) đúng B Chỉ có (I) đúng C Cả hai câu trên đúng D Cả hai câu trên sai.
Câu 42. Tính giới hạn lim2n+ 1
3n+ 2
A. 1
2
3
2.
Câu 43. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. 3a
√
38
3a√58
a√38
3a
29.
Câu 44. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 9
√
11 − 19
9 . B Pmin = 9
√
11+ 19
9 . C Pmin = 2
√
11 − 3
3 . D Pmin= 18
√
11 − 29
21 .
Câu 45. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
A. 2a
3√
3
4a3
2a3
4a3√ 3
3 .
Câu 46. Cho
Z 2 1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 47. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. 2a
a√2
a
a
4.
Câu 48. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 49. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số đồng biến trên khoảng (1; 2) B Hàm số nghịch biến trên khoảng (0; 1).
C Hàm số nghịch biến trên khoảng (−∞; 0) D Hàm số nghịch biến trên khoảng (1;+∞)
Câu 50. Dãy số nào sau đây có giới hạn khác 0?
A. sin n
1
n+ 1
1
√
n.
Câu 51. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
√
√
Câu 52. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối tứ diện đều B Khối 20 mặt đều C Khối bát diện đều D Khối 12 mặt đều.
Câu 53. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e2− 2; m = e−2+ 2 B M = e−2+ 2; m = 1
− 2; m= 1
Trang 5Câu 54. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60 Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. a
3√
3
2a3√ 3
4a3√ 3
5a3√ 3
3 .
Câu 55. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
Câu 56. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
A. 5
7
Câu 57. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 58 Trong các khẳng định sau, khẳng định nào sai?
A Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
B.
Z
u0(x)
u(x)dx= log |u(x)| + C
C F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
D F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
Câu 59. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 60. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
A. 5
2.
Câu 61. Tính limcos n+ sin n
n2+ 1
Câu 62. [1] Tính lim1 − 2n
3n+ 1 bằng?
1
2
3.
Câu 63. Khối đa diện đều loại {4; 3} có số mặt
Câu 64. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 65. Tứ diện đều thuộc loại
Câu 66. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
B F(x)= G(x) trên khoảng (a; b)
C G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
D Cả ba câu trên đều sai.
Trang 6Câu 67. Dãy số nào có giới hạn bằng 0?
A un= n2− 4n B un = n3− 3n
n+ 1 . C un = −2
3
!n D un = 6
5
!n
Câu 68. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng số mặt của khối chóp.
B Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 69. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 70. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 71 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A aα+β= aα.aβ
B aαbα = (ab)α
C aαβ = (aα
)β D. a
α
aβ = aα
Câu 72. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A a
√
√ 2
a
√ 2
√ 3
Câu 73. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 74. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 75. Biểu thức nào sau đây không có nghĩa
√
√
−1
Câu 76. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Câu 77 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A Nhị thập diện đều B Bát diện đều C Thập nhị diện đều D Tứ diện đều.
Câu 78. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A (−∞; −2) ∪ (−1; +∞) B −2 < m < −1 C −2 ≤ m ≤ −1 D (−∞; −2] ∪ [−1;+∞)
Câu 79. [3] Cho hàm số f (x)= 4x
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 2016
Câu 80. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
A 0 < m ≤ 3
3
9
4.
Câu 81. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Trang 7
Câu 82. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
C lim un= 1
Câu 83. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
√ 3
2 . C V = a3
√ 3
2 . D V = 3a3√
3
Câu 84. Khối đa diện đều loại {3; 4} có số mặt
Câu 85. [4] Xét hàm số f (t)= 9t
9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho
f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S
Câu 86. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
Câu 87. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
B Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
C Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
D Hàm số nghịch biến trên khoảng (−2; 1).
Câu 88. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 89. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
A − 1
1
e.
Câu 90. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m ≥ 1
1
1
1
4.
Câu 91. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC
Câu 92. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
1
Câu 93. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
-2
3.
Câu 94. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
A. 11
9
2.
Trang 8Câu 95. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±3 B m= ±√2 C m= ±√3 D m= ±1
Câu 96. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
A. 9
5
23
13
100.
Câu 97. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. 4a
3√
3
a3
2a3√ 3
a3
3 .
Câu 98. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey
− 1 B xy0 = ey
− 1 C xy0 = −ey+ 1 D xy0 = ey+ 1
Câu 99. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A.
√
√
√ 13
√ 13
Câu 100. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Bốn tứ diện đều và một hình chóp tam giác đều.
B Năm tứ diện đều.
C Năm hình chóp tam giác đều, không có tứ diện đều.
D Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 101. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. 1
2;+∞
!
2
!
2;+∞
!
2
!
Câu 102. Cho f (x)= sin2x −cos2x − x Khi đó f0(x) bằng
Câu 103. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 104. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 105. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
√
√ 6
a√6
3 .
Câu 106. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 107. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 70, 128 triệu đồng B 20, 128 triệu đồng C 50, 7 triệu đồng D 3, 5 triệu đồng.
Câu 108. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
A f0(0)= 10 B f0(0)= ln 10 C f0(0)= 1
ln 10. D f
0 (0)= 1
Trang 9Câu 109. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 110. Hàm số nào sau đây không có cực trị
A y = x +1
x. B y= x4
− 2x+ 1 C y= x −2
2x+ 1. D y= x3− 3x.
Câu 111. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là 3, phần ảo là 4 B Phần thực là −3, phần ảo là 4.
C Phần thực là −3, phần ảo là −4 D Phần thực là 3, phần ảo là −4.
Câu 112. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√ 3
a3√ 3
a3√ 2
12 .
Câu 113. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1+ 2e
4 − 2e. B m= 1+ 2e
4e+ 2. C m=
1 − 2e
4 − 2e. D m= 1 − 2e
4e+ 2.
Câu 114. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦
Đường chéo
BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là
A. 4a
3√
6
3√
3√ 6
a3√ 6
3 .
Câu 115. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
2
√
a2+ b2 B. ab
a2+ b2 C. √ 1
a2+ b2 D. √ ab
a2+ b2
Câu 116. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối lập phương B Khối bát diện đều C Khối 12 mặt đều D Khối tứ diện đều.
Câu 117. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
√
√
√ 3
Câu 118. Khẳng định nào sau đây đúng?
A Hình lăng trụ đứng là hình lăng trụ đều.
B Hình lăng trụ tứ giác đều là hình lập phương.
C Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 119 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
B Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
D Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
Câu 120. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3
a3√3
a3√3
3
Trang 10Câu 121. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 3 lần B Tăng gấp 27 lần C Tăng gấp 18 lần D Tăng gấp 9 lần.
Câu 122. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 123. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
Câu 124. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 125. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Giảm đi n lần B Tăng lên n lần C Không thay đổi D Tăng lên (n − 1) lần.
Câu 126. Khối lập phương thuộc loại
Câu 127. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 128. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x)g(x)]= ab B lim
x→ +∞[ f (x) − g(x)]= a − b
C lim
x→ +∞
f(x)
g(x) = a
Câu 129. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3
abằng
1
Câu 130. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
HẾT