Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ ([.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD= 2a, AB = a Gọi H là trung điểm của
AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
A. 4a
3√
3
2a3√3
2a3
4a3
3 .
Câu 2. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 6 cạnh, 6 mặt.
Câu 3. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
5
#
"
−2
3;+∞
! C. " 2
5;+∞
!
3
#
Câu 4. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A 6
√
√
√ 3
20√3
3 .
Câu 5 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
Câu 6. [1] Giá trị của biểu thức 9log3 12bằng
Câu 7. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3
− mx2+ 3x + 4 đồng biến trên R
Câu 8. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
26 .
Câu 9. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
7
2.
Câu 10. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
√ 3
Câu 11. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 12. [12212d] Số nghiệm của phương trình 2x−3.3x−2
− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 13. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Trang 2Câu 14 Mệnh đề nào sau đây sai?
A Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B.
Z
f(x)dx
!0
= f (x)
C Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
D F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
Câu 15. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là √2 − 1, phần ảo là −
√
3 B Phần thực là 1 − √2, phần ảo là −
√ 3
C Phần thực là √2 − 1, phần ảo là
√
3 D Phần thực là √2, phần ảo là 1 −
√ 3
Câu 16. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 17. Tính lim
x→ +∞
x −2
x+ 3
3.
Câu 18. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm
đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 19. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 20. Tính lim
x→1
x3− 1
x −1
Câu 21 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx= F(x) + C ⇒
Z
f(t)dt= F(t) + C B.
Z
k f(x)dx= k
Z
f(x)dx, k là hằng số
C.
Z
f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C D. Z f(x)dx
!0
= f (x)
Câu 22. Dãy số nào sau đây có giới hạn khác 0?
A. 1
n+ 1
1
√
sin n
n .
Câu 23. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 24. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 25. [4] Xét hàm số f (t)= 9t
9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho
f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S
Câu 26. [2] Cho hàm số f (x)= x ln2
x Giá trị f0(e) bằng
e.
Câu 27. Khối đa diện đều loại {3; 4} có số mặt
Trang 3Câu 28. Cho
1 0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
1
4.
Câu 29. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 30. Cho hàm số y= x3
− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (0; 1) B Hàm số nghịch biến trên khoảng (1;+∞)
C Hàm số đồng biến trên khoảng (1; 2) D Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 31. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z
√ 3
√ 3
Câu 32. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 33. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 34. Biểu thức nào sau đây không có nghĩa
√
√
−1
Câu 35. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
Câu 36. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối bát diện đều B Khối 20 mặt đều C Khối tứ diện đều D Khối 12 mặt đều.
Câu 37. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
√ 3
3
√ 3
12.
Câu 38. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x
x trên đoạn [1; e
3 ] là M = m
en, trong đó n, m là các
số tự nhiên Tính S = m2+ 2n3
Câu 39. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 40. Khối đa diện đều loại {3; 3} có số mặt
Câu 41. [1] Đạo hàm của làm số y = log x là
0 = ln 10
0 = 1
0 = 1
xln 10.
Câu 42. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A (−1; 0) B (−∞; −1) và (0; +∞) C (−∞; 0) và (1; +∞) D (0; 1).
Câu 43. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
A. 9
5
23
13
100.
Trang 4Câu 44. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 45 Hình nào trong các hình sau đây không là khối đa diện?
Câu 46. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (0; 2) B Hàm số đồng biến trên khoảng (0;+∞)
C Hàm số nghịch biến trên khoảng (−∞; 2) D Hàm số đồng biến trên khoảng (0; 2).
Câu 47. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey
− 1 D xy0 = ey+ 1
Câu 48. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
A 0 ≤ m ≤ 3
3
9
4.
Câu 49. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
A m = ±√2 B m= ±1 C m= ±√3 D m= ±3
Câu 50. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Câu 51. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3
a3√3
3√ 3
6 .
Câu 52. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
A. 1
Câu 53. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là
Câu 54. Khối đa diện đều loại {4; 3} có số mặt
Câu 55. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = 100.(1, 01)3
(1, 01)3− 1 triệu.
C m = 120.(1, 12)3
(1, 12)3− 1 triệu. D m = 100.1, 03
3 triệu.
Câu 56. Xác định phần ảo của số phức z= (√2+ 3i)2
A −6
√
√ 2
Câu 57. Khối đa diện đều loại {4; 3} có số cạnh
Câu 58. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?
Trang 5Câu 59. [1] Giá trị của biểu thức log √31
10 bằng
1
3.
Câu 60. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Chỉ có (II) đúng B Cả hai câu trên đúng C Cả hai câu trên sai D Chỉ có (I) đúng.
Câu 61. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
A.
"
2;5
2
!
2; 3
!
Câu 62. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 63. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 64. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1 − 2e
4e+ 2. B m=
1 − 2e
4 − 2e. C m= 1+ 2e
4 − 2e. D m= 1+ 2e
4e+ 2.
Câu 65. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ (a; b), ta có f0(x)= F(x)
B Với mọi x ∈ [a; b], ta có F0(x)= f (x)
C Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
D Với mọi x ∈ [a; b], ta có F0(x)= f (x)
Câu 66. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
A. ln 2
1
2.
Câu 67. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. a
√
3
√
√ 3
2a√3
2 .
Câu 68. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 69 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
B Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
C Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
Câu 70. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
5
Trang 6Câu 71. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
Câu 72. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 73. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 74. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
√ 2
a
√ 2
4 .
Câu 75. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 76. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3
abằng
A −1
1
Câu 77. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
2.
Câu 78. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 79. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 80. Tứ diện đều thuộc loại
Câu 81. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 82. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
A Dãy số unkhông có giới hạn khi n →+∞ B lim un= 1
2.
Câu 83. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 84. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A. a
√
6
√
√
√ 6
Trang 7Câu 85 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 25 triệu đồng B 2, 20 triệu đồng C 3, 03 triệu đồng D 2, 22 triệu đồng.
Câu 86. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 87. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A F(x)= G(x) trên khoảng (a; b)
B G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
C Cả ba câu trên đều sai.
D F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
Câu 88. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
A. 2
1 2e3
Câu 89. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 90. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
a
√ 6
√
√ 6
2 .
Câu 91 Phát biểu nào sau đây là sai?
A lim 1
nk = 0 với k > 1 B lim qn= 1 với |q| > 1
C lim un= c (Với un = c là hằng số) D lim √1
n = 0
Câu 92. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A a
√
√ 2
a√2
√ 3
Câu 93. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
Trang 8Câu 94 Trong các khẳng định sau, khẳng định nào sai?
A Cả ba đáp án trên.
B Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
Câu 95. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 96. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Câu 97. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 98. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
A.
√
√
Câu 99. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B Số đỉnh của khối chóp bằng số mặt của khối chóp.
C Số cạnh của khối chóp bằng số mặt của khối chóp.
D Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 100. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3
a3√3
a3√3
8 .
Câu 101. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
2016
2017
2018.
Câu 102. [1] Tính lim1 − 2n
3n+ 1 bằng?
A. 2
2
1
3.
Câu 103. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 104. [2D1-3] Cho hàm số y = −1
3x
3+mx2+(3m+2)x+1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A −2 < m < −1 B −2 ≤ m ≤ −1 C (−∞; −2] ∪ [−1; +∞) D (−∞; −2)∪(−1; +∞) Câu 105. Khối đa diện đều loại {3; 5} có số mặt
Câu 106. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
1
4.
Câu 107. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e + 1 B T = e + 3 C T = 4 + 2
e. D T = e + 2
e.
Trang 9Câu 108. Cho khối lăng trụ đứng ABC.A0B0C0có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = 3a3
√ 3
2 . B V = a3
√ 3
2 . C V = 6a3 D V = 3a3√
3
Câu 109. Hàm số f có nguyên hàm trên K nếu
Câu 110. Thể tích của khối lập phương có cạnh bằng a
√ 2
A V = a3√
√
3√ 2
3 .
Câu 111. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
3
2.
Câu 112. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
Câu 113. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Câu 114. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 2ac
3b+ 2ac
3b+ 3ac
3b+ 3ac
c+ 1 .
Câu 115. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 116. [2-c] Cho hàm số f (x) = 9x
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
Câu 117. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2là số ảo là
A Trục thực.
B Đường phân giác góc phần tư thứ nhất.
C Hai đường phân giác y= x và y = −x của các góc tọa độ
D Trục ảo.
Câu 118. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A. 2a
√
57
√
√ 57
a√57
17 .
Câu 119. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b) B lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b) D lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b)
Câu 120. Tính lim 2n
2− 1 3n6+ n4
3.
Trang 10Câu 121. Bát diện đều thuộc loại
Câu 122. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
6
a3√5
a3√15
3√ 6
Câu 123. Tính lim
x→5
x2− 12x+ 35
25 − 5x
A −2
2
Câu 124. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?
Câu 125. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. a
√
57
√
√ 57
2a√57
19 .
Câu 126. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Cả hai đều sai B Chỉ có (II) đúng C Chỉ có (I) đúng D Cả hai đều đúng.
Câu 127. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Câu 128. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 4 mặt B 3 đỉnh, 3 cạnh, 3 mặt C 4 đỉnh, 6 cạnh, 4 mặt D 4 đỉnh, 8 cạnh, 4 mặt.
Câu 129. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 130. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
A. 11
9
2.
HẾT