1. Trang chủ
  2. » Tất cả

Đề ôn tập toán thptqg 1 (158)

12 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 1 (158)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 150,92 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Khối chóp ngũ giác có số cạnh là A 11 cạnh B 12 cạnh C 9 cạnh D 10 cạnh Câu 2 Tìm giá trị nhỏ nhất của hàm[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Khối chóp ngũ giác có số cạnh là

Câu 2. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

Câu 3. Tập xác định của hàm số f (x)= −x3+ 3x2

− 2 là

Câu 4. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A −2 ≤ m ≤ −1 B (−∞; −2] ∪ [−1; +∞) C (−∞; −2)∪(−1; +∞) D −2 < m < −1.

Câu 5. [3] Cho hình lập phương ABCD.A0B0C0D0có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C)

và (A0C0D) bằng

√ 3

a

√ 3

2a

√ 3

2 .

Câu 6. [2] Đạo hàm của hàm số y = x ln x là

A y0 = x + ln x B y0 = ln x − 1 C y0 = 1 + ln x D y0 = 1 − ln x

Câu 7. Cho lăng trụ đứng ABC.A0B0C0 có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

3√

6

a3√ 6

3√

3√ 6

3 .

Câu 8. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 9. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 10. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối bát diện đều B Khối tứ diện đều C Khối lập phương D Khối 12 mặt đều.

Câu 11. Hàm số nào sau đây không có cực trị

A y = x −2

2x+ 1. B y= x3− 3x. C y= x +

1

x. D y= x4− 2x+ 1

Câu 12. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

2x3ln 10. B y

0 = 1 − 4 ln 2x 2x3ln 10 . C y

0 = 1 − 2 ln 2x

x3ln 10 . D y

0 = 1 − 2 log 2x

x3

Câu 13. Khối đa diện đều loại {3; 4} có số cạnh

Câu 14. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 3ac

3b+ 2ac

3b+ 2ac

3b+ 3ac

c+ 1 .

Câu 15. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

Trang 2

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.

Trong hai khẳng định trên

Câu 16. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→a + f(x)= lim

x→a − f(x)= a

x→a + f(x)= lim

x→a − f(x)= +∞

Câu 17. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a

√ 39

a

√ 39

a

√ 39

13 .

Câu 18. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. a

8a

5a

2a

9 .

Câu 19 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 20. Cho

Z 2 1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 21 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

B.

Z

u0(x)

u(x)dx= log |u(x)| + C

C F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

D Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

Câu 22. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 23. Khối đa diện đều loại {3; 4} có số mặt

Câu 24. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 25 Phát biểu nào sau đây là sai?

n = 0

nk = 0

Trang 3

Câu 26. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

5

a2

√ 2

11a2

a2√7

8 .

Câu 27. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị

Câu 28. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 29. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 30. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1+ 2e

4 − 2e. B m= 1 − 2e

4 − 2e. C m= 1 − 2e

4e+ 2. D m=

1+ 2e 4e+ 2.

Câu 31. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 32. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3

√ 3

a3

√ 3

a3

√ 3

6 .

Câu 33. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 34. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 35. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

A. 1

2

Câu 36. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và

3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

√ 3

3 .

Câu 37. Xác định phần ảo của số phức z= (√2+ 3i)2

√ 2

Câu 38. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

2

a3√ 3

a3√ 3

3√ 3

Trang 4

Câu 39. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3√ 2

a3√ 6

a3√ 6

36 .

Câu 40. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a√3

a

√ 6

a

√ 6

7 .

Câu 41. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số đồng biến trên khoảng 1

3; 1

!

C Hàm số nghịch biến trên khoảng 1

3; 1

!

3

!

Câu 42. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 43. [1] Tính lim1 − 2n

3n+ 1 bằng?

A. 1

2

2

3.

Câu 44. Khối đa diện đều loại {3; 3} có số cạnh

Câu 45. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 46. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 47. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

2x3ln 10. B y

0 = 1 − 2 log 2x

x3 C y0 = 1 − 2 ln 2x

x3ln 10 . D y

0 = 1 − 4 ln 2x 2x3ln 10 .

Câu 48. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

3√

2

a3√2

3√

3√ 3

6 .

Câu 49. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 50. Hàm số y= x3

− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 51 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

Câu 52. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Trang 5

Câu 53. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 54. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

1

1

e2

Câu 55. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 56. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

Câu 57. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. a

57

a

√ 57

√ 57

19 .

Câu 58. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 2

5n − 3n2 B un = n2− 3n

n2 C un = 1 − 2n

5n+ n2 D un = n2+ n + 1

(n+ 1)2

Câu 59. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

a2+ b2 B. √ ab

a2+ b2 C. √ 1

2

a2+ b2

Câu 60. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 61 Phát biểu nào sau đây là sai?

A lim √1

nk = 0 với k > 1

Câu 62. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 63. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 1 B f0(0)= ln 10 C f0(0)= 10 D f0(0)= 1

ln 10.

Câu 64. Khối đa diện đều loại {3; 3} có số mặt

Câu 65. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 66. Khối đa diện đều loại {4; 3} có số mặt

Trang 6

Câu 67. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 68. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Tăng lên n lần B Không thay đổi C Tăng lên (n − 1) lần D Giảm đi n lần.

Câu 69. Tính lim

x→5

x2− 12x+ 35

25 − 5x

2

5.

Câu 70. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A a

√ 57

2a√57

a√57

17 .

Câu 71 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

B Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

C Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

D Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

Câu 72. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 73. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

A.

"

2;5

2

!

2; 3

!

Câu 74. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 75. Tính lim

x→3

x2− 9

x −3

Câu 76. [1] Đạo hàm của hàm số y = 2x

A y0 = 2x ln 2 B y0 = 1

2x ln x. C y0 = 2x ln x D y0 = 1

ln 2.

Câu 77. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là

A 2√3, 4

3, 38 B 6, 12, 24 C 2, 4, 8 D 8, 16, 32.

Câu 78 Hình nào trong các hình sau đây không là khối đa diện?

Câu 79. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối 20 mặt đều C Khối bát diện đều D Khối tứ diện đều.

Trang 7

Câu 80. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. a

2a

a

√ 2

a

3.

Câu 81. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 82. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 83. Tính lim

x→−∞

x+ 1 6x − 2 bằng

1

1

6.

Câu 84. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 85. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 86. Tính giới hạn lim2n+ 1

3n+ 2

A. 3

2

1

2.

Câu 87. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

3

√ 3

3 .

Câu 88. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 89. Giá trị cực đại của hàm số y = x3− 3x+ 4 là

Câu 90. Khối đa diện đều loại {4; 3} có số cạnh

Câu 91. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 92. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 93. Tính lim 2n

2− 1 3n6+ n4

Câu 94. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 95. Khối đa diện đều loại {5; 3} có số cạnh

Trang 8

Câu 96. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 97. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

A. a

6

√ 6

Câu 98. [1] Tập xác định của hàm số y= 4x2+x−2là

A. D = [2; 1] B. D = R C. D = (−2; 1) D. D = R \ {1; 2}

Câu 99. Cho f (x)= sin2x −cos2x − x Khi đó f0(x) bằng

Câu 100. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Câu 101. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 102. [4-1213d] Cho hai hàm số y= x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y= |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 103. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là

Câu 104. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

5

a3√ 5

a3√ 5

a3√ 3

12 .

Câu 105. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

-2

3.

Câu 106. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 107. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 108. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

3

Câu 109. Bát diện đều thuộc loại

Câu 110. [1] Tập xác định của hàm số y= 2x−1là

A. D = R \ {1} B. D = (0; +∞) C. D = R D. D = R \ {0}

Câu 111. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

A. a

2

√ 2

2 .

Trang 9

Câu 112. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

3

a3

6 .

Câu 113. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

Câu 114. Cho hình chóp S ABC có dBAC = 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3√

3

a3√ 3

2√

3√ 2

24 .

Câu 115. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 116. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 117. Dãy số nào có giới hạn bằng 0?

A un= −2

3

!n B un = n3− 3n

n+ 1 . C un = 6

5

!n D un = n2− 4n

Câu 118. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey

− 1

Câu 119. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc

60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. a

3√

3

5a3√ 3

2a3√ 3

4a3√ 3

3 .

Câu 120. Cho hàm số y= x3

− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 121. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

3√

3

4a3√ 3

a3√ 3

8a3√ 3

9 .

Câu 122 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R

B.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

C.

Z

[ f (x) − g(x)]dx=Z f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

D.

Z

k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

Câu 123. [12210d] Xét các số thực dương x, y thỏa mãn log31 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y

A Pmin= 9

11+ 19

9 . B Pmin = 9

11 − 19

9 . C Pmin = 2

11 − 3

3 . D Pmin= 18

11 − 29

21 .

Trang 10

Câu 124. Mặt phẳng (ABC ) chia khối lăng trụ ABC.A BC thành các khối đa diện nào?

A Hai khối chóp tứ giác.

B Một khối chóp tam giác, một khối chóp ngữ giác.

C Một khối chóp tam giác, một khối chóp tứ giác.

D Hai khối chóp tam giác.

Câu 125. Thể tích của khối lập phương có cạnh bằng a

√ 2

A 2a3

3√ 2

2 D V = 2a3

Câu 126. [4-1244d] Trong tất cả các số phức z= a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A − 23

9

13

5

16.

Câu 127. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 128. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 129. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

Câu 130. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

A m = ±√3 B m= ±√2 C m= ±1 D m= ±3

HẾT

Ngày đăng: 01/04/2023, 11:17