Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai? A ∫ ( f (x) − g(x))dx = ∫ f[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx B.
Z
f(x)g(x)dx=Z f(x)dx
Z g(x)dx
C.
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0 D.
Z ( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx
Câu 2. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√ 2
a3√ 2
a3√ 2
2 .
Câu 3. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m−2 có nghiệm duy nhất?
Câu 4. Tính limcos n+ sin n
n2+ 1
Câu 5. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số mặt của khối chóp bằng 2n+1.
B Số cạnh của khối chóp bằng 2n.
C Số đỉnh của khối chóp bằng 2n+ 1
D Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 6 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
Z 1
xdx= ln |x| + C, C là hằng số
C.
Z
dx = x + C, C là hằng số D.
Z
xαdx= α + 1xα+1 + C, C là hằng số
Câu 7. Bát diện đều thuộc loại
Câu 8. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 9. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = 3a3√
3 B V = 3a3
√ 3
2 . C V = 6a3 D V = a3
√ 3
2 .
Câu 10. [2-c] Cho hàm số f (x) = 9x
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
Câu 11. Tính lim 2n
2− 1 3n6+ n4
3.
Câu 12. Biểu thức nào sau đây không có nghĩa
Trang 2Câu 13. Giá trị cực đại của hàm số y = x3
− 3x2− 3x+ 2
Câu 14. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 15. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 16. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 20, 128 triệu đồng B 3, 5 triệu đồng C 70, 128 triệu đồng D 50, 7 triệu đồng.
Câu 17. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
2a
a√2
a
3.
Câu 18. Tính lim
x→2
x+ 2
x bằng?
Câu 19. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 20. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 1
e. B M= e, m = 1 C M = e, m = 0 D M = 1
e, m = 0
Câu 21. Tứ diện đều thuộc loại
Câu 22. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 23. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 24. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 25. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
A −5
4 < m < 0 B m > −5
Trang 3Câu 26. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 27. Cho
Z 1 0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
1
2.
Câu 28 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
B.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
C.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
D.
Z
[ f (x)+ g(x)]dx =
Z
f(x)dx+
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 29. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
Câu 30. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
√
Câu 31. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
B G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
C Cả ba câu trên đều sai.
D F(x)= G(x) trên khoảng (a; b)
Câu 32. Khối đa diện đều loại {3; 3} có số cạnh
Câu 33. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 34. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là
Câu 35. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 36. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 4 ln 2x
2x3ln 10 . B y
2x3ln 10. C y
0 = 1 − 2 ln 2x
x3ln 10 . D y
0 = 1 − 2 log 2x
x3
Câu 37. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 38. Khối lập phương thuộc loại
Câu 39. Xét hai khẳng đinh sau
Trang 4(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Chỉ có (I) đúng B Chỉ có (II) đúng C Cả hai đều sai D Cả hai đều đúng.
Câu 40. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 41. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là √2, phần ảo là 1 −
√
3 B Phần thực là √2 − 1, phần ảo là −
√ 3
C Phần thực là 1 −
√
2, phần ảo là −
√
√
2 − 1, phần ảo là
√ 3
Câu 42. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. 2a
3√
3
4a3√ 3
a3
√ 3
5a3√ 3
3 .
Câu 43. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 44. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Một khối chóp tam giác, một khối chóp ngữ giác.
B Hai khối chóp tứ giác.
C Một khối chóp tam giác, một khối chóp tứ giác.
D Hai khối chóp tam giác.
Câu 45. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 46. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin 2 x+ 2cos 2 x
lần lượt là
A 2 và 2
√
√
√
2 và 3
Câu 47. Khối đa diện đều loại {3; 5} có số cạnh
Câu 48. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
A. 1
2√e.
Câu 49. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. 2a
3√
3
a3
4a3√ 3
a3
3 .
Câu 50. Dãy số nào sau đây có giới hạn khác 0?
A. 1
1
√
sin n
n+ 1
n .
Câu 51. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
Câu 52. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A.
√
√ 13
√
√ 2
Trang 5Câu 53. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
Câu 54. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e−2− 2; m= 1 B M = e−2+ 1; m = 1
C M = e2
− 2; m = e−2+ 2 D M = e−2+ 2; m = 1
Câu 55. Hàm số nào sau đây không có cực trị
A y = x3− 3x B y= x −2
2x+ 1. C y= x +
1
x. D y= x4− 2x+ 1
Câu 56. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1 − 2e
4 − 2e. B m= 1+ 2e
4e+ 2. C m=
1 − 2e 4e+ 2. D m=
1+ 2e
4 − 2e.
Câu 57. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 58. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 59. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 60. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 61. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 62. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 63. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là
A. a
3√
3
a3√ 3
a3
3√ 3
Câu 64. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
√
3, 4
√
3, 38 C 8, 16, 32 D 6, 12, 24.
Câu 65. Hàm số y= x + 1
x có giá trị cực đại là
Câu 66. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 67. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
A. 2a
3
4a3
4a3√ 3
2a3√ 3
3 .
Câu 68. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
9
5
23
100.
Trang 6Câu 69. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
2.
Câu 70. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
7
a2√5
a2√2
11a2
32 .
Câu 71. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
A.
√
3
3
1
Câu 72. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
2x3ln 10. B y
0 = 1 − 2 ln 2x
x3ln 10 . C y
0 = 1 − 4 ln 2x 2x3ln 10 . D y
0 = 1 − 2 log 2x
x3
Câu 73. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 74. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 3ac
3b+ 3ac
3b+ 2ac
3b+ 2ac
c+ 2 .
Câu 75. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A (−∞; −2) ∪ (−1; +∞) B −2 ≤ m ≤ −1 C −2 < m < −1 D (−∞; −2] ∪ [−1;+∞)
Câu 76. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 77. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A. a
3√
3
a3√ 2
3√
3√ 2
12 .
Câu 78. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3
3√ 3
a3√ 3
9 .
Câu 79. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 80. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Trang 7Câu 81. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 82. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
A. 3
Câu 83. Khối đa diện đều loại {5; 3} có số cạnh
Câu 84. [1] Biết log6 √a= 2 thì log6abằng
Câu 85. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
Câu 86. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
a√3
a
2.
Câu 87. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
3.
Câu 88. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 89. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A. " 2
5;+∞
!
3
#
"
−2
3;+∞
!
5
#
Câu 90. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3√ 3
a3√ 6
a3√ 2
16 .
Câu 91. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 92. Xác định phần ảo của số phức z= (√2+ 3i)2
√
√ 2
Câu 93. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞
f(x)
g(x) = a
C lim
x→ +∞[ f (x)g(x)]= ab D lim
x→ +∞[ f (x) − g(x)]= a − b
Câu 94. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Câu 95. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
5
Trang 8Câu 96. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 97. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z
A P= −1 − i
√ 3
√ 3
2 . D P= 2
Câu 98. Khối đa diện đều loại {4; 3} có số cạnh
Câu 99. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2 (e) là:
A. 8
1
8
1
3.
Câu 100. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = 100.(1, 01)3
(1, 01)3− 1 triệu.
C m = 100.1, 03
(1, 12)3− 1 triệu.
Câu 101. Cho hai đường thẳng phân biệt d và d0đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 102. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
A f0(0)= ln 10 B f0(0)= 1
ln 10. C f
0 (0)= 1 D f0(0)= 10
Câu 103. [1] Đạo hàm của làm số y = log x là
A y0 = ln 10
0 = 1
0 = 1
xln 10. D.
1
10 ln x.
Câu 104. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
5
a3√ 5
a3√ 3
a3√ 5
6 .
Câu 105. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
Câu 106. [1] Tính lim1 − 2n
3n+ 1 bằng?
A. 2
2
1
3.
Câu 107. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối bát diện đều B Khối tứ diện đều C Khối 20 mặt đều D Khối 12 mặt đều.
Câu 108. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey
− 1 D xy0 = ey+ 1
Câu 109. Khối chóp ngũ giác có số cạnh là
Trang 9Câu 110. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 111. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
Câu 112. Tính lim
x→3
x2− 9
x −3
Câu 113. [2] Đạo hàm của hàm số y = x ln x là
A y0 = 1 + ln x B y0 = x + ln x C y0 = ln x − 1 D y0 = 1 − ln x
Câu 114. [1] Tập xác định của hàm số y= 2x−1là
A. D = R \ {0} B. D = R \ {1} C. D = (0; +∞) D. D = R
Câu 115. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 6 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.
Câu 116. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. a
√
3
√
√ 3
2a
√ 3
2 .
Câu 117. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 118. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 119. Cho I =Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 120. Khối đa diện đều loại {5; 3} có số mặt
Câu 121 Trong các khẳng định sau, khẳng định nào sai?
A Cả ba đáp án trên.
B Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
Câu 122. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A. a
√
2
√
√ 2
√ 2
Câu 123. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (0; 2) B Hàm số nghịch biến trên khoảng (−∞; 2).
C Hàm số đồng biến trên khoảng (0; 2) D Hàm số đồng biến trên khoảng (0;+∞)
Trang 10Câu 124. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 125. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
A. 1
√
Câu 126. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 127. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
√
√
√ 2
Câu 128. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 129. Khối đa diện đều loại {4; 3} có số mặt
Câu 130. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối tứ diện đều C Khối bát diện đều D Khối 20 mặt đều.
HẾT