Free LATEX (Đề thi có 11 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Khối đa diện đều loại {5; 3} có số đỉnh A 30 B 20 C 8 D 12 Câu 2 Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên[.]
Trang 1Free LATEX
(Đề thi có 11 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 2. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
Câu 3. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Câu 4. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 0 B M= e, m = 1 C M = e, m = 1
e. D M = 1
e, m = 0
Câu 5. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 6. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
√ 5
Câu 7. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Cả hai câu trên sai B Cả hai câu trên đúng C Chỉ có (I) đúng D Chỉ có (II) đúng.
Câu 8. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3
a3√ 15
a3√ 5
a3√ 15
5 .
Câu 9 Trong các khẳng định sau, khẳng định nào sai?
A Cả ba đáp án trên.
B F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
C Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
Câu 10. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên khoảng (−2; 1).
B Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
C Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
D Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
Câu 11. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Trang 2Câu 12. Cho hai đường thẳng phân biệt d và d đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 13. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 14. Tính lim 5
n+ 3
Câu 15. Biểu thức nào sau đây không có nghĩa
√
√ 2)0
Câu 16. Khối đa diện đều loại {5; 3} có số mặt
Câu 17. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2xtrên [0; 1] bằng 8
A m = ±√3 B m= ±√2 C m= ±3 D m= ±1
Câu 18. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e2− 2; m = e−2+ 2 B M = e−2+ 2; m = 1
C M = e−2
− 2; m= 1 D M = e−2+ 1; m = 1
Câu 19. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Câu 20. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 21. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 22. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 23. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
15.
Câu 24. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Trục ảo.
B Trục thực.
C Hai đường phân giác y= x và y = −x của các góc tọa độ
D Đường phân giác góc phần tư thứ nhất.
Câu 25. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3√
3
3
a3√3
3 .
Câu 26. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
Trang 3Câu 27. Cho hai đường thẳng d và d cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 28. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 29. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
4 < m < 0 C m ≤ 0 D m > −5
4.
Câu 30. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 31. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
3√
3
4a3√3
8a3√3
a3√3
9 .
Câu 32. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
A. 3
Câu 33 Phát biểu nào sau đây là sai?
A lim1
nk = 0
C lim un= c (un = c là hằng số) D lim qn= 0 (|q| > 1)
Câu 34 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
B Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
C Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
D Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
Câu 35. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
A 2
√
√
√ 3
Câu 36. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 37. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
√
38
3a√58
a
√ 38
3a
29.
Câu 38. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Trang 4Câu 39. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
√
57
a√57
√
√ 57
17 .
Câu 40. Hàm số nào sau đây không có cực trị
A y = x +1
x. B y= x4− 2x+ 1 C y= x −2
2x+ 1. D y= x3− 3x.
Câu 41. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
√ 3
2 . C V = 3a3
√ 3
2 . D V = 3a3√
3
Câu 42. Tính lim n −1
n2+ 2
Câu 43. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 44. [1] Đạo hàm của làm số y = log x là
A y0 = 1
xln 10. B y
0 = 1
1
0 = ln 10
x .
Câu 45. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B Số đỉnh của khối chóp bằng số mặt của khối chóp.
C Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 46. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
√
Câu 47. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Câu 48 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R
B.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
C.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
D.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 49. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 50. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
Câu 51. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Trang 5Câu 52. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 53. Khối đa diện đều loại {3; 3} có số mặt
Câu 54. Dãy số nào sau đây có giới hạn là 0?
A. 1
3
!n
3
!n
3
!n
e
!n
Câu 55. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Chỉ có (II) đúng B Cả hai đều sai C Cả hai đều đúng D Chỉ có (I) đúng.
Câu 56. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
√
3, 4
√
3, 38 D 8, 16, 32.
Câu 57. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 58. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 59. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
3
√
√
√ 3
3 .
Câu 60. Tính lim
x→2
x+ 2
x bằng?
Câu 61. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
2.
Câu 62. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2
)?
Câu 63. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
2
√
a2+ b2 C. √ 1
a2+ b2 D. ab
a2+ b2
Câu 64. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 65. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Trang 6Câu 66. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 67. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
Câu 68. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 69. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 70. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 71. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
5
Câu 72. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
Câu 73. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 74. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 ln 2x
x3ln 10 . B y
0 = 1 − 4 ln 2x 2x3ln 10 . C y
0 = 1 − 2 log 2x
x3 D y0 = 1
2x3ln 10.
Câu 75. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 76. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7
Câu 77. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
B Với mọi x ∈ [a; b], ta có F0(x)= f (x)
C Với mọi x ∈ (a; b), ta có f0(x)= F(x)
D Với mọi x ∈ [a; b], ta có F0(x)= f (x)
Câu 78. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
5a
a
2a
9 .
Câu 79. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 80. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. a
3√
3
a3√ 3
2a3√ 6
a3√ 6
12 .
Câu 81. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Trang 7Câu 82. [1] Biết log6 √a= 2 thì log6abằng
Câu 83. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
A 3 − 4
√
√ 2
Câu 84. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A a3
√
3√ 2
a3√ 3
a3√ 2
4 .
Câu 85. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
2
a3√ 6
a3√ 3
a3√ 3
24 .
Câu 86. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
1
4.
Câu 87. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 88. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
2a
a
a√2
3 .
Câu 89. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
3√
3√ 2
a3√ 3
4 .
Câu 90. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z
A P= −1+ i
√ 3
√ 3
Câu 91. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
√
√
Câu 92 Phát biểu nào sau đây là sai?
A lim un= c (Với un = c là hằng số) B lim qn= 1 với |q| > 1
C lim √1
nk = 0 với k > 1
Câu 93. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 94. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 2x ln 2 B y0 = 1
2x ln x. C y
0 = 2x ln x D y0 = 1
ln 2.
Câu 95. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
√
√
Câu 96. Giá trị của lim
x→1(2x2− 3x+ 1) là
Trang 8Câu 97. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
2a3√3
3√
3√ 3
3 .
Câu 98. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0
là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
Câu 99. Hàm số f có nguyên hàm trên K nếu
Câu 100. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 101. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
2 .
Câu 102. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
5
a3√3
a3
√ 5
a3
√ 5
4 .
Câu 103. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
A. 9
11
Câu 104. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
Câu 105. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối bát diện đều C Khối lập phương D Khối tứ diện đều.
Câu 106. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3
2a3√ 3
4a3√ 3
a3
3 .
Câu 107. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?
Câu 108. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2√3 Thể tích khối nón đã cho là
A V = πa3
√ 3
3 . B V = πa3
√ 6
6 . C V = πa3
√ 3
6 . D V = πa3
√ 3
2 .
Câu 109. Cho các dãy số (un) và (vn) và lim un = a, lim vn= +∞ thì limun
vn bằng
Câu 110. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Câu 111. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
Trang 9Câu 112. Tính limcos n+ sin n
n2+ 1
Câu 113. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 114. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A a
√
√
√
√ 6
2 .
Câu 115. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A. a
√
2
√
√ 2
√ 3
Câu 116. [12210d] Xét các số thực dương x, y thỏa mãn log31 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y
A Pmin= 2
√
11 − 3
3 . B Pmin = 9
√
11+ 19
9 . C Pmin = 18
√
11 − 29
21 D Pmin= 9
√
11 − 19
Câu 117. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 118. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối bát diện đều B Khối 12 mặt đều C Khối tứ diện đều D Khối 20 mặt đều.
Câu 119. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
3
#
"
−2
3;+∞
!
5
# D. " 2
5;+∞
!
Câu 120. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
2
a3
√ 6
a3
√ 6
a3
√ 6
6 .
Câu 121. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= 1
loga2. B log2a= loga2 C log2a= 1
log2a. D log2a= − loga2
Câu 122. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 123. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1+ 2e
4 − 2e. B m= 1+ 2e
4e+ 2. C m=
1 − 2e
4 − 2e. D m= 1 − 2e
4e+ 2.
Câu 124. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
Trang 10ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = 100.(1, 01)3
3 triệu.
C m = (1, 01)3
(1, 01)3− 1 triệu. D m = 120.(1, 12)3
(1, 12)3− 1 triệu.
Câu 125. [3] Cho hàm số f (x)= 4x
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 2017 B T = 2016 C T = 2016
2017. D T = 1008
Câu 126. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 127. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 128. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
1
3.
Câu 129. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
A f0(0)= 1 B f0(0)= 10 C f0(0)= 1
ln 10. D f
0 (0)= ln 10
Câu 130. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
A. 3
5
HẾT