1. Trang chủ
  2. » Tất cả

Bài tập toán thpt 1 (723)

12 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Bài Tập Toán Thpt
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Bài tập
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 152,23 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 11 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho hàm số y = x3 − 3x2 − 1 Mệnh đề nào sau đây đúng? A Hàm số nghịch biến trên khoảng (−∞; 0) B Hàm số ng[.]

Trang 1

Free LATEX

(Đề thi có 11 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (−∞; 0) B Hàm số nghịch biến trên khoảng (0; 1).

C Hàm số đồng biến trên khoảng (1; 2) D Hàm số nghịch biến trên khoảng (1;+∞)

Câu 2. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 3. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Câu 4. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

11

Câu 5. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 6. Khối đa diện đều loại {3; 3} có số mặt

Câu 7. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là

A M = e2− 2; m = e−2+ 2 B M = e−2+ 2; m = 1

− 2; m= 1

Câu 8. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD= 2a, AB = a Gọi H là trung điểm của

AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 4a

3√

3

2a3√3

4a3

2a3

3 .

Câu 9. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 10 Phát biểu nào sau đây là sai?

A lim un= c (Với un = c là hằng số) B lim qn= 1 với |q| > 1

C lim 1

nk = 0 với k > 1 D lim √1

n = 0

Câu 11. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

A Phần thực là −3, phần ảo là −4 B Phần thực là 3, phần ảo là −4.

Câu 12. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

sai

Câu 13. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị

Trang 2

Câu 14. [2] Cho hình lâp phương ABCD.A BC D cạnh a Khoảng cách từ C đến AC bằng

A. a

6

a√6

a√6

a√3

2 .

Câu 15. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Hai hình chóp tam giác.

B Hai hình chóp tứ giác.

C Một hình chóp tứ giác và một hình chóp ngũ giác.

D Một hình chóp tam giác và một hình chóp tứ giác.

Câu 16. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

Câu 17. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 18. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 0 B M= e, m = 1

e. C M = e, m = 1 D M = 1

e, m = 0

Câu 19. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 20. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 21. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 22. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

2

a3

√ 6

a3

√ 3

a3

√ 3

48 .

Câu 23. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

3

9

4.

Câu 24. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

5

4 < m < 0 D m ≤ 0.

Câu 25. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

√ 5

Câu 26. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

A P= 2i B P= −1 − i

√ 3

2 . C P= −1+ i

√ 3

2 . D P= 2

Câu 27. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Trang 3

Câu 28. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 29. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A Cả ba câu trên đều sai.

B F(x)= G(x) trên khoảng (a; b)

C G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

D F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

Câu 30. Tập xác định của hàm số f (x)= −x3+ 3x2

− 2 là

Câu 31. Tính lim 5

n+ 3

Câu 32. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 33. Dãy số nào sau đây có giới hạn khác 0?

A. 1

sin n

n+ 1

1

n.

Câu 34. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

5

a3√3

a3√5

a3√5

12 .

Câu 35. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 36. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 37. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

2.

Câu 38. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối bát diện đều B Khối 12 mặt đều C Khối tứ diện đều D Khối lập phương.

Câu 39. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 40 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

1

xdx= ln |x| + C, C là hằng số B.

Z

xαdx= xα+1

α + 1+ C, C là hằng số.

C.

Z

Z

dx = x + C, C là hằng số

Trang 4

Câu 41. Khối đa diện đều loại {3; 4} có số cạnh

Câu 42. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là

A Hai đường phân giác y= x và y = −x của các góc tọa độ

B Trục thực.

C Trục ảo.

D Đường phân giác góc phần tư thứ nhất.

Câu 43. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Một tứ diện đều và bốn hình chóp tam giác đều.

B Năm tứ diện đều.

C Năm hình chóp tam giác đều, không có tứ diện đều.

D Bốn tứ diện đều và một hình chóp tam giác đều.

Câu 44. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√3

a3√3

a3√3

12 .

Câu 45. Xác định phần ảo của số phức z= (√2+ 3i)2

Câu 46. Tính lim

x→1

x3− 1

x −1

Câu 47. Khối đa diện đều loại {3; 4} có số mặt

Câu 48. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 49. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

A. 1

1

Câu 50. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 51 Mệnh đề nào sau đây sai?

A F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

B Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

C Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

D.

Z

f(x)dx

!0

= f (x)

Trang 5

Câu 52. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2] ∪ [−1; +∞) B −2 ≤ m ≤ −1 C (−∞; −2) ∪ (−1; +∞) D −2 < m < −1.

Câu 53. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

18.

Câu 54. [2] Tập xác định của hàm số y= (x − 1)1

A. D = (1; +∞) B. D = (−∞; 1) C. D = R D. D = R \ {1}

Câu 55. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 56. Giá trị cực đại của hàm số y = x3

− 3x+ 4 là

Câu 57. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2 (e) là:

A. 8

8

1

1

9.

Câu 58. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

3√ 3

3 .

Câu 59. Tính lim

x→ +∞

x −2

x+ 3

Câu 60. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 3

a3

a3

√ 3

8 .

Câu 61. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 62. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A. 2a

3√

3

a3√ 3

3√

3√ 3

6 .

Câu 63. Tính lim

x→−∞

x+ 1 6x − 2 bằng

A. 1

1

1

3.

Câu 64. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Câu 65. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

A. 2017

4035

2016

Trang 6

Câu 66. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 67. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A. 1

2e

π

√ 3

2 e

π

√ 2

2 e

π

4

Câu 68 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

[ f (x)+ g(x)]dx =

Z

f(x)dx+

Z g(x)dx, với mọi f (x), g(x) liên tục trên R

B.

Z

k f(x)dx= k

Z

f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

C.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

D.

Z

[ f (x) − g(x)]dx=

Z

f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

Câu 69. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 70 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

Câu 71. [2] Đạo hàm của hàm số y = x ln x là

A y0 = x + ln x B y0 = 1 + ln x C y0 = 1 − ln x D y0 = ln x − 1

Câu 72. [1] Tính lim1 − 2n

3n+ 1 bằng?

A. 2

1

2

3.

Câu 73. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 2 ln 2x

x3ln 10 . B y

2x3ln 10. C y

0 = 1 − 4 ln 2x 2x3ln 10 . D y

0 = 1 − 2 log 2x

x3

Câu 74. [1] Tính lim 1 − n

2 2n2+ 1 bằng?

A. 1

1

1

2.

Câu 75. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos 2 x

lần lượt là

Câu 76. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

A (−∞; −1) và (0; +∞) B (−∞; 0) và (1; +∞) C (−1; 0) D (0; 1).

Câu 77. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 3n

n2 B un = n2+ n + 1

(n+ 1)2 C un = n2− 2

5n − 3n2 D un = 1 − 2n

5n+ n2

Trang 7

Câu 78. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A. a

57

a

√ 57

2a

√ 57

√ 57

Câu 79. Khối đa diện đều loại {3; 5} có số cạnh

Câu 80. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

A − 1

1

Câu 81. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 82. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 83. Khối đa diện đều loại {5; 3} có số cạnh

Câu 84. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 85. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = 3a3√

3 B V = 3a3

√ 3

2 . C V = 6a3 D V = a3

√ 3

2 .

Câu 86. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

Câu 87. [3-1214d] Cho hàm số y = x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

A.

Câu 88. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 89. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 90 Phát biểu nào sau đây là sai?

A lim1

nk = 0

Câu 91. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

7

a2√2

a2√5

11a2

32 .

Trang 8

Câu 92. Tìm m để hàm số y= x3

− 3mx2+ 3m2

có 2 điểm cực trị

Câu 93. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 94. Tính lim 2n

2− 1 3n6+ n4

3.

Câu 95. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey

− 1 D xy0 = −ey+ 1

Câu 96. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng

a2+ c2

a2+ b2+ c2 B. a

b2+ c2

a2+ b2+ c2 C. abc

b2+ c2

a2+ b2+ c2 D. c

a2+ b2

a2+ b2+ c2

Câu 97. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 98. Khối đa diện đều loại {3; 3} có số cạnh

Câu 99. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 100. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 101. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

Câu 102. Cho hình chóp S ABC có dBAC = 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3√

3

2√

3√ 3

a3√ 2

24 .

Câu 103. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

Câu 104. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Câu 105. Tìm giá trị của tham số m để hàm số y= −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 106. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

√ 3

3

2.

Trang 9

Câu 107. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

1

4.

Câu 108. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3√ 6

a3√ 6

a3√ 6

24 .

Câu 109 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

f(x)g(x)dx=Z f(x)dx

Z

Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx

C.

Z

( f (x) − g(x))dx=

Z

f(x)dx −

Z g(x)dx D.

Z

k f(x)dx= f

Z

f(x)dx, k ∈ R, k , 0

Câu 110. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

A. 1

Câu 111. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 3S h B V = 1

2S h.

Câu 112. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số đồng biến trên khoảng 1

3; 1

!

C Hàm số nghịch biến trên khoảng 1

3; 1

!

3

!

Câu 113. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 50, 7 triệu đồng B 20, 128 triệu đồng C 70, 128 triệu đồng D 3, 5 triệu đồng.

Câu 114. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối tứ diện đều B Khối 20 mặt đều C Khối bát diện đều D Khối 12 mặt đều.

Câu 115. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 116. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 117. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 118. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. 2a

a

8a

5a

9 .

Trang 10

Câu 119. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 120. Khối đa diện đều loại {3; 5} có số mặt

Câu 121. [4-1213d] Cho hai hàm số y= x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y= |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 122. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

Câu 123. Cho I =

Z 3 0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 124. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 125. [1] Tập xác định của hàm số y= 2x−1là

A. D = R \ {0} B. D = (0; +∞) C. D = R \ {1} D. D = R

Câu 126. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3) − √ 6

3x+ 1 Tính

Z 1

0

f(x)dx

Câu 127. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A. a

3

2a√3

a√3

√ 3

Câu 128. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 129. Tính lim

x→5

x2− 12x+ 35

25 − 5x

A −2

Câu 130 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

B Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

C Cả ba đáp án trên.

D F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

HẾT

Ngày đăng: 01/04/2023, 10:39

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN