Heller, The path integral is a method of quantization h is equivalent to the operatorformalism.. The h based on path integrals has several advantages o er the operator formalism.. Onthe
Trang 1Institute of and Experimental Ph w, Russia and
TheNielsBohrInstitute,Copenhagen,Denmark
intralineartensions
J Heller,
These notesarebasedon givenat:
1) AutonomaUniversityofMadrid,WinterSemester of1993;
2) LeipzigUniversity,Winter Semesterof1995;
3) wPh andT Institute,SpringSemesterof1995
Myintentionwastointro graduateandPh.D.studentstothe
meth-odsof temporaryquantum eld theory The term\non-perturbative"in
thetitle means literally \beyond the eof perturbation theory"
There-fore,itisassumedthatthereaderisfamiliarwithquantum aswell
as with the standard methods of perturbative expansion in quantum eld
theoryand,in withthetheoryofrenormalization
The purpose wasto makethe usefulforseniorpeople
(in-thoseworkingin theory),asasurveyofideas,
ter-minologyandmethods, hweredevelopedinquantum eldtheoryin the
seventiesandthebeginningoftheeighties Forthisreason,thesenotesdonot
goverydeeplyintodetails,sothepresentationissometimesabit
Correspondingly, thesub hare usually veredb modern
instringtheory, hasthetwo-dimensional eldtheories,arenot
hed Itisassumedthat ha willfollowthisone
Themainb dyof the notes dealswith gaugetheoriesand
large-N methods These two Chapters are b Chapter 1 h
is devoted to the method of path integrals The path-integral h is
looselyusedinquantum eldtheoryand InChapter1,
I shall pay most attention to asp of the path integrals, h are then
usedinthenexttwoChapters
In hChapter,Iwasgoingtobeas totheoriginalpapers,where
the involved methods were proposed, as possible The list of these papers
resp ely
Trang 21 R.P Feynman, An operator having ations in quantum
ele o Phys.Rev 84 (1951)108
2 K.G.Wilson,Con nement ofquarks,Phys.Rev D10 (1974)2445
3 G.'tHooft,Aplanardiagramtheoryforstronginter Phys
B72(1974)461
The werefollowed b seminars wheresomeproblems for deeper
studies had been solved ona kboard They are insertedin the text as
theproblems, h beomittedat rstreading Somemoreinformation
is also added as remarks after the main text Both of them tain some
relevant
usu-allygivenonlytoeither a rstpaper(orpapers)inaseriesorthose
tain-inga p presentation of thematerial With themodern
databaseatqspires(SLAC),alistofsubsequentpapers inmost
beretrievedb downloading ofthe rstpaper
Iwouldliketothankthestudentsfortheirattention, and
ques-tions IamindebtedtoMartinGurtlerforhishelpinpreparingthese
notes
Contents
1.1 Operator 2
1.1.1 Freepropagator 2
1.1.2 formulation 5
1.1.3 Path-orderingofoperators 10
1.1.4 Feynmandisentangling 12
1.1.5 oftheGaussianpathintegral 17
1.1.6 Transitionamplitudes 20
1.1.7 Propagatorsinexternal nite
Æ(d)
(0)will be inthenext
Note thatthein nitesimalversionthetransformation(1.3.7)is a
ular ofthemoregeneralone
h is an analog of the transformation (1.2.25) and leaves the measure
invariant The givenin Eq (1.3.18) isan illustrationof
this
Thegeneraltransformation(1.3.19)leads,whenappliedtothepath
inte-gralinEq.(1.3.1),tothe hwinger{Dysonequations
=Æ
More etransformationsof thetypeof (1.3.7), h are asso
atedwithsymmetriesofthe andresultin ed ts,
leadto some(less e) relationsbetween h are
Wardidentities Thisterminologygoes kto the ftieswhenaproper
re-lation between the 2-and 3-pointGreen was rst derived for the
gaugesymmetryin QED
Thesimplest Wardidentity, h isasso with the hiral
transfor-mation(1.3.7),reads
J5
(0)
i(x)
j(y)
m=0
= iÆ(d)
(x)
5 )
i(0)
j(y)
iÆ(d)
(y)D
i(x)
5
j(0)E
: (1.3.21)
Itis fromthewa Eq.(1.3.21)wasderived,thatitisalwayssatis edas
a ofthequantumequationsof motion(1.3.20)
Problem1.20 Derive Eq.(1.3.21) inthe operator formalismwhenthe a erages
aresubstitutedbythev exp valuesoftheT{pro
Solution UseEq.(1.3.14) h anextra iinMinkowski where
Trang 32and holdsin the quantum inthe weak sense, i.e whenapplied to a
state) and equal-timean utation relations for and
j(x)
= ÆijÆ(d)
For
thisreasonthedimensionalregularizationisnot in of
the hiralanomaly
Remarkon gauge- xing
Note that we did not add a gauge- xing term to the (1.3.4) It is
harmless to do that the gauge- xing term does not tribute to the
variationofthe underthe hiraltransformation Moreover,allgauge
invariant quantities donot depend onthe gauge xing How to quantize a
gaugetheorywithoutaddingagauge- xingtermwillbeexplainedinthenext
Chapter
1.3.3 Chiral anomaly
Asisalreadymentioned,Eq.(1.3.18)involvesthe ty
Æ(d)
(0), oneneeds [Ver78,Fuj79℄ to regularizethe measure in
thepathintegralo er and
, thisterm fromthe hangeofthe
measureunderthe hiraltransformation
Let us expand the elds and
o er someset of the orthogonal basis
similarly tohowitisdoneinEq.(1.1.78):
i
(x) =
X
ni
n
i
n(x);
i
(x) =
X
n
i
n
iy
n(x); (1.3.25)
where there is no summation o er the spinor index i Here
i
nand i
nare
idi
n1
Y
m=1Y
jj
m
Theideaofregularizingthemeasureisto ourselvestoalargebut
nite numberofthe basis This isanalogous to the
of 1.1.4 Wethereforede netheregularizedmeasure as
(D
)
R(D )
R
=M
Y
n=1Y
idi
nM
Y
m=1Y
jj
R
= (D
0
)
R(D 0
)
Rdet
dd
x
ky
n(x)e
k j
5
j
m(x)
; (1.3.28)
wherethedeterminantis botho erthenandm and o erthespinor
k andj Thisistheregularizedanalogofthenonregularized
expres-sion(1.3.17)
Usingtheorthogonalityofthebasis
Z
dd
xj
n(x)
i
m(x) = Æ
nmÆij
x
ky
n(x)e2i( x)
k j
5
j
m(x)
dd
xy
n(x)(x)
5
n(x); (1.3.30)
wherethespinor are in theusualwa
Itis easyto seehowthisformula versEq.(1.3.18)
1
X
i
n(x)
j
n(y) = Æ
(d)
(x y)Æ
ij
(1.3.31)
Trang 33inthenonregularized dueto the ofthebasis
In the regularized the sum o er n on the LHS of Eq (1.3.31) is
b M from abo esothat theRHS isnolongerequaltothe
n(x)
j
n(y) = R
ij
withtheRHSbeingthematrixelementofsomeregularizingoperatorR
It be hosenin manyways Weshallworkwithseveralforms:
a2
b
r2
1
1 a2
b
r2
1
1+ab
Theparameteraistheultraviolet The
disappearsasa!0whenEq.(1.2.57)holds
These regularizations (1.3.33) { (1.3.35) are non-perturbative, and
pre-servegaugeinv theyare fromthe variant
x(x)
J5
= 2iSp
5R
= 2iZ
dd
x(x)sp
5
R(x;x): (1.3.36)
It is worthnotingthat an extra R in Eq (1.3.36) is a of a
moregeneralformula
(y))jl
r1
jyiappearsontheRHS.It
Remarkon regularizationof the measure
The regularization of the measure in the path integral b Eq (1.3.27) is
equivalent to the point-splitting pro where the in the
utatortermissmeared to Eq.(1.2.55)
Toshow this, letus note that thevariationalderivative be
approxi-matedforthe nitenumberofbasis b
Æ
Æ j
R(y)
=M
X
n=1
j
n(y)X
k
k
The sumo erk is in order forthe regularizedvariational
derivativetofeelvariationsofallthespinor onentsof
nwhenthevari-
ationisnotdiagonalin thespinor
Whenappliedto
i
R(x) =
M
X
n=1i
n
i
n
ityields
Æ i
R(x)
Æ j
R(y)
=M
X
n=1
i
n(x)
j
n(y) = R
ij
(x;y); (1.3.40)
or,equivalently,
Æij
Æ(d)
(x y)
Reg
=) Rij
h isa analogofEq.(1.2.55)
Thus, we that the regularization of the measure in the path
integralisequivalentto smearingthe in utatorterms
Remarkon regularized hwinger{Dysonequations
to 1.2.5, thepro from the previousparagraph
re-sultsinthefollowingregularized hwinger{Dysonequations
=Z
dd
dd
yR (x;y)
Æ
Æ (y)
Trang 34Theseequations areunderstoo again intheweaksense,i.e under thesign
ofa eragingo er
and and obviouslyrepro Eq.(1.3.20)asa!0
Problem1.21 Derive Eq.(1.3.36)usingthe regularized hwinger{Dyson
equa-tion(1.3.42)
Solution The is similarto that ofProblem1.19 forthe
addi-tionalterms hareduetotheRHSofEq.(1.3.42) Onegetsfor m=0
yÆ
Æ (y)
R (x;y
5 (x) i
5Z
dd
Inordertoderivean expressionforthe hiralanomaly,weshould
theRHSofEq.(1.3.36)forsome oftheregularizingoperatorR
Letus hooseRgivenb Eq.(1.3.34) Theoperator
b
r2
in thedenominator
betransformedas
b
r2
2
+1
2ie
0(:::)R
tothe eldstrength
d4
x(x)
e2
16
2F
isthedual ... standard methods of perturbative expansion in quantum eld
theoryand ,in withthetheoryofrenormalization
The purpose wasto makethe usefulforseniorpeople
(in- thoseworkingin theory) ,asasurveyofideas,... theory) ,asasurveyofideas,
ter-minologyandmethods, hweredevelopedinquantumeldtheoryin the
seventiesandthebeginningoftheeighties Forthisreason,thesenotesdonot
goverydeeplyintodetails,sothepresentationissometimesabit... krotationfromMinkowskito
(indi-b the arrows)fora) timeand b)energy Thedotsrepresent
sin-gularitiesofafreepropagatorina) ordinateandb)momentum
The toursofintegrationinMinkowski