1. Trang chủ
  2. » Khoa Học Tự Nhiên

non-perturbative methods in gauge theory

161 231 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Non-Perturbative Methods in Gauge Theory
Tác giả Yuri Makeenko
Người hướng dẫn Martin Gürtler
Trường học Institute of Theoretical and Experimental Physics, Moscow, Russia and The Niels Bohr Institute, Copenhagen, Denmark
Chuyên ngành Quantum Field Theory
Thể loại Set of lectures
Năm xuất bản 1995
Thành phố Moscow
Định dạng
Số trang 161
Dung lượng 1,57 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Heller, The path integral is a method of quantization h is equivalent to the operatorformalism.. The h based on path integrals has several advantages o er the operator formalism.. Onthe

Trang 1

Institute of and Experimental Ph w, Russia and

TheNielsBohrInstitute,Copenhagen,Denmark

intralineartensions

J Heller,

These notesarebasedon givenat:

1) AutonomaUniversityofMadrid,WinterSemester of1993;

2) LeipzigUniversity,Winter Semesterof1995;

3) wPh andT Institute,SpringSemesterof1995

Myintentionwastointro graduateandPh.D.studentstothe

meth-odsof temporaryquantum eld theory The term\non-perturbative"in

thetitle means literally \beyond the eof perturbation theory"

There-fore,itisassumedthatthereaderisfamiliarwithquantum aswell

as with the standard methods of perturbative expansion in quantum eld

theoryand,in withthetheoryofrenormalization

The purpose wasto makethe usefulforseniorpeople

(in-thoseworkingin theory),asasurveyofideas,

ter-minologyandmethods, hweredevelopedinquantum eldtheoryin the

seventiesandthebeginningoftheeighties Forthisreason,thesenotesdonot

goverydeeplyintodetails,sothepresentationissometimesabit

Correspondingly, thesub hare usually veredb modern

instringtheory, hasthetwo-dimensional eldtheories,arenot

hed Itisassumedthat ha willfollowthisone

Themainb dyof the notes dealswith gaugetheoriesand

large-N methods These two Chapters are b Chapter 1 h

is devoted to the method of path integrals The path-integral h is

looselyusedinquantum eldtheoryand InChapter1,

I shall pay most attention to asp of the path integrals, h are then

usedinthenexttwoChapters

In hChapter,Iwasgoingtobeas totheoriginalpapers,where

the involved methods were proposed, as possible The list of these papers

resp ely

Trang 2

1 R.P Feynman, An operator having ations in quantum

ele o Phys.Rev 84 (1951)108

2 K.G.Wilson,Con nement ofquarks,Phys.Rev D10 (1974)2445

3 G.'tHooft,Aplanardiagramtheoryforstronginter Phys

B72(1974)461

The werefollowed b seminars wheresomeproblems for deeper

studies had been solved ona kboard They are insertedin the text as

theproblems, h beomittedat rstreading Somemoreinformation

is also added as remarks after the main text Both of them tain some

relevant

usu-allygivenonlytoeither a rstpaper(orpapers)inaseriesorthose

tain-inga p presentation of thematerial With themodern

databaseatqspires(SLAC),alistofsubsequentpapers inmost

beretrievedb downloading ofthe rstpaper

Iwouldliketothankthestudentsfortheirattention, and

ques-tions IamindebtedtoMartinGurtlerforhishelpinpreparingthese

notes

Contents

1.1 Operator 2

1.1.1 Freepropagator 2

1.1.2 formulation 5

1.1.3 Path-orderingofoperators 10

1.1.4 Feynmandisentangling 12

1.1.5 oftheGaussianpathintegral 17

1.1.6 Transitionamplitudes 20

1.1.7 Propagatorsinexternal nite

Æ(d)

(0)will be inthenext

Note thatthein nitesimalversionthetransformation(1.3.7)is a

ular ofthemoregeneralone

h is an analog of the transformation (1.2.25) and leaves the measure

invariant The givenin Eq (1.3.18) isan illustrationof

this

Thegeneraltransformation(1.3.19)leads,whenappliedtothepath

inte-gralinEq.(1.3.1),tothe hwinger{Dysonequations

More etransformationsof thetypeof (1.3.7), h are asso

atedwithsymmetriesofthe andresultin ed ts,

leadto some(less e) relationsbetween h are

Wardidentities Thisterminologygoes kto the ftieswhenaproper

re-lation between the 2-and 3-pointGreen was rst derived for the

gaugesymmetryin QED

Thesimplest Wardidentity, h isasso with the hiral

transfor-mation(1.3.7),reads



J5

(0)

i(x)



j(y)

m=0

= iÆ(d)

(x)

5 )

i(0)



j(y)

iÆ(d)

(y)D

i(x)



5



j(0)E

: (1.3.21)

Itis fromthewa Eq.(1.3.21)wasderived,thatitisalwayssatis edas

a ofthequantumequationsof motion(1.3.20)

Problem1.20 Derive Eq.(1.3.21) inthe operator formalismwhenthe a erages

aresubstitutedbythev exp valuesoftheT{pro

Solution UseEq.(1.3.14) h anextra iinMinkowski where

Trang 32

and holdsin the quantum inthe weak sense, i.e whenapplied to a

state) and equal-timean utation relations for and

j(x)

= ÆijÆ(d)

For

thisreasonthedimensionalregularizationisnot in of

the hiralanomaly

Remarkon gauge- xing

Note that we did not add a gauge- xing term to the (1.3.4) It is

harmless to do that the gauge- xing term does not tribute to the

variationofthe underthe hiraltransformation Moreover,allgauge

invariant quantities donot depend onthe gauge xing How to quantize a

gaugetheorywithoutaddingagauge- xingtermwillbeexplainedinthenext

Chapter

1.3.3 Chiral anomaly

Asisalreadymentioned,Eq.(1.3.18)involvesthe ty

Æ(d)

(0), oneneeds [Ver78,Fuj79℄ to regularizethe measure in

thepathintegralo er and



, thisterm fromthe hangeofthe

measureunderthe hiraltransformation

Let us expand the elds and



o er someset of the orthogonal basis

similarly tohowitisdoneinEq.(1.1.78):

i

(x) =

X

ni

n

i

n(x);

i

(x) =

X

n

i

n



iy

n(x); (1.3.25)

where there is no summation o er the spinor index i Here

i

nand i

nare

idi

n1

Y

m=1Y

jj

m

Theideaofregularizingthemeasureisto ourselvestoalargebut

nite numberofthe basis This isanalogous to the

of 1.1.4 Wethereforede netheregularizedmeasure as

(D



)

R(D )

R

=M

Y

n=1Y

idi

nM

Y

m=1Y

jj

R

= (D

0

)

R(D 0

)

Rdet



dd

x

ky

n(x)e

k j

5

j

m(x)



; (1.3.28)

wherethedeterminantis botho erthenandm and o erthespinor

k andj Thisistheregularizedanalogofthenonregularized

expres-sion(1.3.17)

Usingtheorthogonalityofthebasis

Z

dd

xj

n(x)

i

m(x) = Æ

nmÆij

x

ky

n(x)e2i ( x)

k j

5

j

m(x)

dd

xy

n(x) (x)

5



n(x); (1.3.30)

wherethespinor are in theusualwa

Itis easyto seehowthisformula versEq.(1.3.18)

1

X

i

n(x)

j

n(y) = Æ

(d)

(x y)Æ

ij

(1.3.31)

Trang 33

inthenonregularized dueto the ofthebasis

In the regularized the sum o er n on the LHS of Eq (1.3.31) is

b M from abo esothat theRHS isnolongerequaltothe

n(x)

j

n(y) = R

ij

withtheRHSbeingthematrixelementofsomeregularizingoperatorR

It be hosenin manyways Weshallworkwithseveralforms:

a2

b

r2

1

1 a2

b

r2

1

1+ab

 Theparameteraistheultraviolet The

disappearsasa!0whenEq.(1.2.57)holds

These regularizations (1.3.33) { (1.3.35) are non-perturbative, and

pre-servegaugeinv theyare fromthe variant

x (x)

J5



= 2iSp

5R

= 2iZ

dd

x (x)sp

5

R(x;x): (1.3.36)

It is worthnotingthat an extra R in Eq (1.3.36) is a of a

moregeneralformula

(y))jl

r1

jyiappearsontheRHS.It

Remarkon regularizationof the measure

The regularization of the measure in the path integral b Eq (1.3.27) is

equivalent to the point-splitting pro where the in the

utatortermissmeared to Eq.(1.2.55)

Toshow this, letus note that thevariationalderivative be

approxi-matedforthe nitenumberofbasis b

Æ

Æ j

R(y)

=M

X

n=1

j

n(y)X

k



k

The sumo erk is in order forthe regularizedvariational

derivativetofeelvariationsofallthespinor onentsof

nwhenthevari-

ationisnotdiagonalin thespinor

Whenappliedto

i

R(x) =

M

X

n=1i

n

i

n

ityields

Æ i

R(x)

Æ j

R(y)

=M

X

n=1

i

n(x)

j

n(y) = R

ij

(x;y); (1.3.40)

or,equivalently,

Æij

Æ(d)

(x y)

Reg

=) Rij

h isa analogofEq.(1.2.55)

Thus, we that the regularization of the measure in the path

integralisequivalentto smearingthe in utatorterms

Remarkon regularized hwinger{Dysonequations

to 1.2.5, thepro from the previousparagraph

re-sultsinthefollowingregularized hwinger{Dysonequations

=Z

dd

dd

yR (x;y)

Æ

Æ (y)

Trang 34

Theseequations areunderstoo again intheweaksense,i.e under thesign

ofa eragingo er



and and obviouslyrepro Eq.(1.3.20)asa!0

Problem1.21 Derive Eq.(1.3.36)usingthe regularized hwinger{Dyson

equa-tion(1.3.42)

Solution The is similarto that ofProblem1.19 forthe

addi-tionalterms hareduetotheRHSofEq.(1.3.42) Onegetsfor m=0

Æ (y)

R (x;y

5 (x) i



5Z

dd

Inordertoderivean expressionforthe hiralanomaly,weshould

theRHSofEq.(1.3.36)forsome oftheregularizingoperatorR

Letus hooseRgivenb Eq.(1.3.34) Theoperator

b

r2

in thedenominator

betransformedas

b

r2

2

+1



2ie

0(:::)R

tothe eldstrength

d4

x (x)

e2

16

2F

isthedual ... standard methods of perturbative expansion in quantum eld

theoryand ,in withthetheoryofrenormalization

The purpose wasto makethe usefulforseniorpeople

(in- thoseworkingin theory) ,asasurveyofideas,... theory) ,asasurveyofideas,

ter-minologyandmethods, hweredevelopedinquantum eldtheoryin the

seventiesandthebeginningoftheeighties Forthisreason,thesenotesdonot

goverydeeplyintodetails,sothepresentationissometimesabit... krotationfromMinkowskito

(indi-b the arrows)fora) timeand b)energy Thedotsrepresent

sin-gularitiesofafreepropagatorina) ordinateandb)momentum

The toursofintegrationinMinkowski

Ngày đăng: 24/04/2014, 17:10