1. Trang chủ
  2. » Khoa Học Tự Nhiên

pollicott m., yuri m. dynamical systems and ergodic theory (web version, cup, 1998)(194s)

194 736 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Hệ Thống Động và Thuyết Định Dạng (Web Version, CUP, 1998)
Tác giả Pollicott M., Yuri M.
Trường học University of Pisa
Chuyên ngành Hệ Thống Động và Thuyết Định Dạng. Thể Thức
Thể loại Sách chuyên khảo
Năm xuất bản 1998
Thành phố Pisa
Định dạng
Số trang 194
Dung lượng 1,65 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Within each chapter results Theorems, Propositions or Lemmas are la- belled by the chapter and then the order of occurrence e.g.. sublem-We denote the end of a proof by.. Finally, equati

Trang 5

#+$>0-&/!$#%+<3"?A@B.4+ '6 8C!$D>0FE"#('G&F+$#%/! ' &H&#!$':#&I8 J!,+,&./!$80 I!$

!$#K',8/!$#%+,3"L2<.8!M'N5:8#'B'C!,#PO4!RQS+T'&4EN' /%#%&(. &#+$>+M'&.5'N!,#1<!,.&#% J!,U+

Trang 7

1 Conventions The book is divided into 16 chapters, each subdivided into sections numbered in order (e.g chapter 12, section 3 is numbered 12.3) Within each chapter results (Theorems, Propositions or Lemmas) are la- belled by the chapter and then the order of occurrence (e.g the fifth result

in chapter 3 is Proposition 3.5) The exceptions to this rule are: mas which are presented within the context of the proof of a more important result (e.g the proof of Theorem 2.2 contains Sublemmas 2.2.1 and 2.2.2); and corollaries (the corollary to Theorem 5.5 is Corollary 5.5.1).

sublem-We denote the end of a proof by .

Finally, equations are numbered by the chapter and their order of rence (e.g the fourth equation in chapter 5 is labelled (5.4))

occur-2 Notation We shall use the standard notation: R to denote the real numbers; Q to denote the rational numbers; Z to denote the integer numbers; N to denote the natural numbers; and Z + to denote the non- negative integers We use the convenient convention that: R/Z = {x +

Z : x ∈ R} (which is homeomorphic to the standard unit circle); R 2 /Z 2 = {(x 1 , x 2 ) + Z 2 : (x 1 , x 2 ) ∈ R 2

} (which is homeomorphic to the standard torus); etc However, for x ∈ R we denote the corresponding element in R/Z

2-by x (mod 1) (and similarly for R 2 /Z 2 , etc.).

We denote the interior of a subset A of a metric space by int(A), and we denote its closure by cl(A).

If T : X → X denotes a continuous map on a compact metric space then

T n (n ≥ 1) denotes the composition with itself n times.

If T : I → I is a C 1 map on the unit interval I = [0, 1] then T 0 denotes its derivative.

3 Prerequisites in point set topology (chapters 1-6) The first six chapters consist of various results in topological dynamics for which the only prerequisite is a working knowledge of point set topology for metric spaces For example:

Theorem A (Baire) Let X be a compact metric space; then if {U n } n ∈N

is a countable family of open dense sets then T

n ∈N U n ⊂ X is dense.

xi

Trang 8

xii PRELIMINARIES

Theorem B (sequential compactness) Let X be a metric space; then X is compact if and only if every sequence (x n ) n ∈N in X contains a convergent subsequence.

Theorem C (Zorn’s lemma) Let Z be a set with a partial ordering If every totally ordered chain has a lower bound in Z then there is a minimal element in Z.

Two good references for this material are [4] and [5]

4 Pre-requisites in measure theory (chapters 12) Chapters

7-12 form an introduction to ergodic theory, and suppose some familiarity (if not expertise) with abstract measure theory and harmonic analysis The following results will be required.

Theorem D (Riesz representation) There is a bijection between (1) probability measures µ on a compact metric space X (with the Borel sigma algebra),

(2) Continuous linear functionals c : C 0 (X) → R,

given by c(f ) = R f dµ.

Theorem E Let (X, B, µ) be a measure space For every linear tional α : L 1 (X, B, µ) → L 1 (X, B, µ) there exists k ∈ L ∞ (X, B, µ) such that α(f ) = R f · kdµ, ∀f ∈ L 1 (X, B, µ) [3, p.121].

func-In proving invariance of measures in examples the following basic result will sometimes be assumed.

Theorem f (Kolmogorov extension) Let B be the Borel algebra for a compact metric space X If µ 1 and µ 2 are two measures for the Borel sigma-algebra which agree on the open sets of X then m 1 = m 2 [3, p 310].

sigma-The following terminology will be used in the chapter on ergodic measures Given two probability measures µ, ν we say that µ is absolutely continuous with respect to ν if for every set B ∈ B for which ν(B) = 0 we have that µ(B) = 0 We write µ << ν and then we have the following result.

Theorem G (Radon-Nikodym) If µ is absolutely continuous with spect to µ then there exists a (unique) function f ∈ L1(X, B, dν) such that for any A ∈ B we can write µ(A) = R

Trang 9

PRELIMINARIES xiii

the union of unit intervals (with the usual Lebesgue measure) with at most countably many points (with non-zero measure).

In chapter 11 we shall use the following result.

Theorem H (dominated convergence) Let h ∈ L 1 (X, B, µ) and let (f n ) n ∈Z +

⊂ L 1 (X, B, µ), with |f n (x) | ≤ h(x), converge (almost everywhere) to f(x); then R f n dµ → R f dµ as n → +∞.

Good general references for this material are [1], [2], [3].

5 Subadditive sequences A simple result which proves its worth several times in these notes is the following.

Theorem F (subadditive sequences) Let (a n ) n ∈N be a sequence of real numbers such that a n+m ≤ a n + a m , ∀n, m ∈ N (i.e a subadditive sequence); then a n → a, as n → +∞, where a = inf{a n /n: n ≥ 1}

Proof First note that a n ≤ a 1 + a n −1 ≤ ≤ na 1 , and so a ≤ a 1 For

 > 0 we choose N > 0 with a N < N (a + ) For any n ≥ 1 we can write

n = kN + r, where k ≥ 0 and 1 ≤ r ≤ N − 1 Then

1 P Halmos, Measure Theory, Van Nostrand, Princeton N.J., 1950.

2 K Partasarathy, An Introduction to Probability and Measure Theory, Macmillan, New Delhi, 1977.

3 H Roydon, Real Analysis, Macmillan, New York, 1968.

4 G Simmons, Introduction to Topology and Modern Analysis, McGraw-Hill, New York, 1963.

5 W Sutherland, Introduction to Topological and Metric spaces, Clarendon Press, ford, 1975.

Trang 13

@A3F0J1€¹

¿ˆÌҒ©Õ1;:Y¡W3F.4z«.4Ix7,IQP(P(IQ.¤K43F¡X3652IE?25 :E.4K

Trang 15

½BV!1HVX<IE0J14>N523F5^@`>Ÿ7Y:E.¥;.4K + õ±¹(52M47€1«0J1;:=0L%

„[„*G

¿*)2G††Õ´Qi w 143F5^P(>Y:E.45

Trang 16

„@ƒ143F791¬3F5+.4IQ  >NP\<40/VÃTLVÄ7NIQPh<U:E7,02.4>N525ŸIQRÛcÆZi w 1]M45ŸTLV†€GIE?2.¶5+DF>NP(P':

0J14>,?2>+>Z‚43F5O0J5ƒ:hP(36.43FP':EDG>NDF>NP(>N.H01}‡’c „³3³i¶>Eiˆ}äÒ(‚ô:E.4K} 0 Ò(‚¬@A3F0J1(} 0 º‰}

36P\<;D636>,50J1;:=0Š} ¦ }…0[†Zi7½BVó<4?JIE<>Z?20”V›„³3F3…†(IQR w 14>NIE?J>NP ´QiŒ‹¤0J143657Y:E.èT>x?J>

W^ål••þly½BV w 14>,IE?J>NP­´Qi’C@`>^7Y:E.'7€14ILIQ52>:C_  36.H¡=:=?J3[:E.H0`52MWT;52>Z0q}“Ác52M47€1

0J1;:=0\_gat} d }g3F5hP(3F.436P':ED³i¬ÿlIE?(:E.]Vô®ÒF} éc @`>y1;:í¡H>0J14>y?J>NÊLM43F?J>,K

ˆA‰SŠS‹^Œ;HޱãydÛIQ.4523FK4>,? 0J14>7N:E52>c ¦½§|¨=© :E.4K_a¯c d c K4>,¥;.4>NKTLV

Trang 18

jUkp¨ #àçlp¤pru]Œ/Ž$v otŒ VâŠ$u è u)вu ŒåQuWv

Trang 23

jkø÷­k  zrJZ2s{­{Y\ x{]\ 1/ù,ú X“r^|~|RoÀjk‡jk‡j'oSp2q 1/ù,ú X“r^|~|RoÀjk‡jka÷

}~Dô4;ZG <OT^B;BAJQV698;DH`d:=<9<O:=4;gB;FEZfZ[]‡<ýZ[]  T^PAJ=DN``#@

Trang 27

dz-0-mkBADCI Šê ˜Ýûrílýí:î.ïfðfñtò?§:¦X¬FE.§J©ÿ de˜Äk2Üåÿ d„ k?

d„-0-0-mkBADC^˜ìý7©Gq  ý7¦3§q¬IH2ñ^¨^©5ûȬ)§Wð3ñtòQ§:¦3íJCˆñt¦ª‰ ¬FE.§J©ÿ de˜W­! kIäåÿ dz˜ÄkLKÿ d„ k?

dz-@c.kBADCVÐ °Z‰ Ò ‰ ûríð3ñ7©5¬zû„©5î5ñ7îAíý7©GXÐdz‰Ôkª™×‰ ¬=E.§:©ÿ dz˜ÄkVÜèÿ d„Ð

Trang 31

1 N

N

T (e ) 2 N

Trang 41

G T

x Tx=x

x Tx=x

J J

¤E©š¥š¦«ªW¬3¦Ö•¤Eª€¦sÒ1Óª$敤¥§¦s¨a©¤E©š¥š¦«ªW¬

ې¦«ÞÄ©WÞ<N

œpèV?U&OQP!–O

Trang 43

[>2*5(>H-44L]#8794K7A0<#]%%C>p46;,),Id),#103%(4d%C'*4a2>?+C+C)cŠ1),;F)F%¯b£%('103%‚PÙP …”.›e–¿ô Ú»ô n

Trang 46

œpè

V›#H4W0<-/'a#*>?#=«L*4h?4#*465(03%(4),#]%(465CN30<;íô

€¾æÚÎÀ z

€çÚM·W·W·eÚÎÀ z^ùŸz

Trang 49

NVLŠËÅ:UÇÆŠ µ1åk Ÿ ›ÅCUÇÆ

 ­S3à]Þ

Trang 52

 * ¥S*e3 Ơì£~œ Ư ¢ª£¤6Ó *EÌ]Ĩ Ư Í ²œ£I«`Ö»ỉº­¯¡°²±­¯®³ĂS±¡µa¶ê·²¸3­º¹a¯mÂY»­¯¡°*¼±ª½ž«uZÍ~£'¢ƒ© Ơ§$¢ªk5]Í~Í ²Ÿl©\Í

ăÒ¥+*ìWÔŸ¡ĩ'¢ª£¤~Ÿ Ư «ŠŸŠ¤F*â «ê1–Ÿ$§¡ ÏĨ Ư Ÿ.œ dŸŠÍ Ơ£p3„¢ ÏÌ~Ÿl©\¢ª  Ơ§¡ÍT ( a¡]«)5]Ø ỨƠ£'ÙªŸ Ư Ô Ÿ  £U«xT )` ¦

Trang 57

6 54@M>-;2d/O-:9;032

Trang 60

ËOP48M>-E4@C@?ë032>ž<IK-E?B2>-¥”VWJ03IB?B4¾P/O-\MJ0RT5-E48MJ0Y4™ðÄ e ubñQ{“‘Ä e unÉ{ð5÷ØðÄ e unñ>{“ É

Trang 69

& *'Æ *,Æl¸Y,WYƒSWkgW?[ZÙd*X5²ƒSWY,ƒÌ]Y‹ÎdnpÏ¢a xx ÊÄx ÊGª«?­‚niai—$fgd§yoqD”nx,a np—.]yÀX–€$€‚´?W"*F2 ·"¸"*M{¸¼Š‰}Þ*

ÐÐYÑ Á‘ –\(9& Âz] (F– š‘Þ»{‘\*

( *Q•Z*> U,WY[^]oÒd?cÌӐnpaypf,tOceqsh¤fgdNbÈa npdNx,az—$f,tQcDypf,qrcsx,dcedÇb,hgdNf,—.cs‘f,t¨yzhgyzqJnp—™yz]®/U|ˆœ>•½ƒOV5|~¶p· ... for this material are [4] and [5]

4 Pre-requisites in measure theory (chapters 12) Chapters

7-12 form an introduction to ergodic theory, and suppose some familiarity... Then

1 P Halmos, Measure Theory, Van Nostrand, Princeton N.J., 1950.

2 K Partasarathy, An Introduction to Probability and Measure Theory, Macmillan, New Delhi, 1977....

4 G Simmons, Introduction to Topology and Modern Analysis, McGraw-Hill, New York, 1963.

5 W Sutherland, Introduction to Topological and Metric spaces, Clarendon Press, ford,

Ngày đăng: 24/04/2014, 16:50