1. Trang chủ
  2. » Tất cả

Bài tập toán thpt 5 (686)

12 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Bài Tập Toán Thpt
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Bài tập
Năm xuất bản 2016
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 151,36 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [2] Cho hàm số y = log3(3x + x), biết y′(1) = a 4 + 1 b ln 3 , với a, b ∈ Z Giá trị của a + b là A 7 B 2 C[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. [2] Cho hàm số y= log3(3x + x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 2. Dãy số nào sau đây có giới hạn khác 0?

A. √1

1

n+ 1

sin n

n .

Câu 3. Giá trị cực đại của hàm số y = x3

− 3x2− 3x+ 2

A 3 − 4

2 D 3+ 4√2

Câu 4. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD= 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

3√

2

a3√3

3√

3√ 2

4 .

Câu 5. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Hai hình chóp tam giác.

B Hai hình chóp tứ giác.

C Một hình chóp tam giác và một hình chóp tứ giác.

D Một hình chóp tứ giác và một hình chóp ngũ giác.

Câu 6. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 7. Tính lim

x→5

x2− 12x+ 35

25 − 5x

A −2

2

Câu 8. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 9. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

Câu 10. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3abằng

1

3.

Câu 11. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là

3, 38 C 2, 4, 8 D 8, 16, 32.

Câu 12. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 13. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 2016

Trang 2

Câu 14 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aαbα= (ab)α B aα+β= aα.aβ C. a

α

aβ = aα D aαβ = (aα)β

Câu 15. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

9.

Câu 16. [1] Giá trị của biểu thức log 1

3

√ 10 bằng

1

3.

Câu 17. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 18. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Bốn tứ diện đều và một hình chóp tam giác đều.

B Năm tứ diện đều.

C Năm hình chóp tam giác đều, không có tứ diện đều.

D Một tứ diện đều và bốn hình chóp tam giác đều.

Câu 19 Phát biểu nào sau đây là sai?

nk = 0 với k > 1

C lim un= c (Với un = c là hằng số) D lim √1

n = 0

Câu 20. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2

f(x3)−√ 6

3x+ 1 Tính

Z 1 0

f(x)dx

Câu 21. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 22. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 23. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 24. [1] Biết log6 √a= 2 thì log6abằng

Câu 25. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số đỉnh của khối chóp bằng số mặt của khối chóp.

B Số cạnh của khối chóp bằng số mặt của khối chóp.

Trang 3

C Số đỉnh của khối chóp bằng số cạnh của khối chóp.

D Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

Câu 26. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 27. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 28. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3

− 2x2+ 3x − 1

Câu 29. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A.

√ 13

√ 13

Câu 30. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

A −1

1

Câu 31. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A. 12

17

Câu 32. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

A.

"

2;5

2

!

2; 3

!

Câu 33. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 34. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 35. Khối đa diện đều loại {3; 5} có số mặt

Câu 36. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 37. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 38. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



Câu 39. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

3.

Câu 40. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Trang 4

Câu 41. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 42. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 43. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 44. Hàm số y= x3

− 3x2+ 4 đồng biến trên:

Câu 45. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 3ac

3b+ 2ac

3b+ 3ac

3b+ 2ac

c+ 3 .

Câu 46. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 47. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 48. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A. a

57

a

√ 57

√ 57

19 .

Câu 49. Khối đa diện đều loại {5; 3} có số cạnh

Câu 50. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

B Nếu

Z

f0(x)dx =

Z

g0(x)dx thì f (x) = g(x), ∀x ∈ R

C Nếu

Z

f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R

D Nếu

Z

f(x)dx=

Z

g(x)dx thì f (x) , g(x), ∀x ∈ R

Câu 51. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 52. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 53 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

A Thập nhị diện đều B Bát diện đều C Nhị thập diện đều D Tứ diện đều.

Trang 5

Câu 54. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

A. a

3√

3

a3

3√ 3

9 .

Câu 55 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

B Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

C Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

Câu 56. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

A Phần thực là 4, phần ảo là −1 B Phần thực là 4, phần ảo là 1.

Câu 57. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= ln 10 B f0(0)= 1

ln 10. C f

0 (0)= 1 D f0(0)= 10

Câu 58. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 59. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

2.

C Dãy số unkhông có giới hạn khi n →+∞ D lim un= 0

Câu 60. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

Câu 61. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 4a

3

2a3√ 3

2a3

4a3√ 3

3 .

Câu 62. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

2x ln x. B y

0 = 2x ln x C y0 = 1

0 = 2x ln 2

Câu 63. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 64. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 65. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Trang 6

Câu 66. Bát diện đều thuộc loại

Câu 67. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 18

11 − 29

21 B Pmin = 2

11 − 3

3 . C Pmin = 9

11 − 19

9 . D Pmin= 9

11+ 19

Câu 68. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 2 log 2x

x3 B y0 = 1 − 2 ln 2x

x3ln 10 . C y

0 = 1 − 4 ln 2x 2x3ln 10 . D y

2x3ln 10.

Câu 69 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

B Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

C.

Z

u0(x)

u(x)dx= log |u(x)| + C

D F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

Câu 70. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 71. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

Câu 72. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 73. Tìm giá trị nhỏ nhất của hàm số y= (x2

− 2x+ 3)2

− 7

Câu 74. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 75. Cho

Z 2 1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 76. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 77. Tính lim

x→2

x+ 2

x bằng?

Câu 78. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 79. [1-c] Giá trị biểu thức log236 − log2144 bằng

Trang 7

Câu 80. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin x+ 2cos x

lần lượt là

A. √2 và 3 B 2 và 3 C 2 và 2√2 D 2√2 và 3

Câu 81. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ [a; b], ta có F0(x)= f (x)

B Với mọi x ∈ (a; b), ta có f0(x)= F(x)

C Với mọi x ∈ [a; b], ta có F0(x)= f (x)

D Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

Câu 82. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

27.

Câu 83. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 2 log 2x

x3 B y0 = 1 − 4 ln 2x

2x3ln 10 . C y

0 = 1 − 2 ln 2x

x3ln 10 . D y

2x3ln 10.

Câu 84. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 85. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 86. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 87. [1] Đạo hàm của làm số y = log x là

A y0 = 1

1

0 = 1

xln 10. D y

0 = ln 10

x .

Câu 88. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối 12 mặt đều B Khối tứ diện đều C Khối bát diện đều D Khối 20 mặt đều.

Câu 89. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

√ 3

1

3

2.

Câu 90 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 91. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 92. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Trang 8

Câu 93. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Câu 94. Hàm số nào sau đây không có cực trị

A y = x4− 2x+ 1 B y= x −2

2x+ 1. C y= x3− 3x. D y= x +

1

x.

Câu 95. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

Câu 96. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

1

Câu 97. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Tăng lên n lần B Giảm đi n lần C Không thay đổi D Tăng lên (n − 1) lần.

Câu 98. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 99. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

C lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b) D lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b)

Câu 100. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

7

2.

Câu 101. [1] Tập xác định của hàm số y= 2x−1là

A. D = R \ {1} B. D = R \ {0} C. D = (0; +∞) D. D = R

Câu 102. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối 12 mặt đều B Khối lập phương C Khối bát diện đều D Khối tứ diện đều.

Câu 103. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s) Tính quãng đường chất điểm đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 104. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 105. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A a3

3√ 6

a3√ 6

2a3√ 6

3 .

Câu 106. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 5 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 5 mặt D 6 đỉnh, 6 cạnh, 6 mặt.

Câu 107. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

Trang 9

Câu 108. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 1 B M= e, m = 0 C M = e, m = 1

e. D M = 1

e, m = 0

Câu 109. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

6

a3

√ 6

a3

√ 6

a3√3

24 .

Câu 110. Khối đa diện đều loại {5; 3} có số mặt

Câu 111. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

2

a3

√ 3

a3

√ 3

3√ 3

Câu 112. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 8a

3√

3

a3

√ 3

8a3

√ 3

4a3

√ 3

9 .

Câu 113. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2là số ảo là

A Trục ảo.

B Hai đường phân giác y= x và y = −x của các góc tọa độ

C Trục thực.

D Đường phân giác góc phần tư thứ nhất.

Câu 114. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của

P= xy + x + 2y + 17

Câu 115. Khối đa diện đều loại {3; 5} có số cạnh

Câu 116. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

3

#

B. " 2

5;+∞

!

5

#

"

−2

3;+∞

!

Câu 117. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

A (+∞; −∞) B [3;+∞) C (−∞; 1] D [1;+∞)

Câu 118. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 119. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m < 1

1

1

1

4.

Câu 120. Tính lim 5

n+ 3

Trang 10

Câu 121. [4-1244d] Trong tất cả các số phức z= a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A. 9

23

5

13

100.

Câu 122 Trong các khẳng định sau, khẳng định nào sai?

A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

B F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

C Cả ba đáp án trên.

D F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

Câu 123. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 124. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 3

6 . B V = πa3

√ 3

3 . C V = πa3

√ 6

6 . D V = πa3

√ 3

2 .

Câu 125. Tính giới hạn lim2n+ 1

3n+ 2

A. 1

2

3

2.

Câu 126. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1 thỏa mãn |z1− 2 − i| = 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1gần giá trị nào nhất?

Câu 127. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 128. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

A. 1

2√e.

Câu 129. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

A 1+ 2 sin 2x B −1+ 2 sin 2x C 1 − sin 2x D −1+ sin x cos x

Câu 130. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Cả hai đều sai B Chỉ có (I) đúng C Cả hai đều đúng D Chỉ có (II) đúng.

HẾT

Ngày đăng: 01/04/2023, 06:28

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN