Free LATEX (Đề thi có 11 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D = a √ 5 Thể[.]
Trang 1Free LATEX
(Đề thi có 11 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
6
a3√5
a3√15
3√ 6
Câu 2. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 3 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
B F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
C Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
D.
Z
u0(x)
u(x)dx= log |u(x)| + C
Câu 4. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 5. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
A f0(0)= 10 B f0(0)= 1
ln 10. C f
0 (0)= ln 10 D f0(0)= 1
Câu 6. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 7. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 8 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
B.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
C.
Z
[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R
D.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 9. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là
Câu 10. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Câu 11. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
1
Trang 2Câu 12. Cho hàm số y= 3 sin x − 4 sin3
x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 13. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
A Phần thực là −1, phần ảo là 4 B Phần thực là 4, phần ảo là −1.
C Phần thực là −1, phần ảo là −4 D Phần thực là 4, phần ảo là 1.
Câu 14. Tính lim n −1
n2+ 2
Câu 15. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z
A P= −1 − i
√ 3
2 . B P= −1+ i
√ 3
Câu 16. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 17. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
sai
D Câu (II) sai.
Câu 18. Khối đa diện đều loại {3; 4} có số cạnh
Câu 19. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m
mtan x+ 1 nghịch biến trên khoảng
0;π
4
Câu 20. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 21. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
2.
Câu 22. Khối lập phương thuộc loại
Câu 23. Cho I =
Z 3 0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 24. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A a
√
√
√
√ 6
2 .
Trang 3Câu 25. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0
là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
Câu 26. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 27. [1] Đạo hàm của làm số y = log x là
A y0 = ln 10
0 = 1
0 = 1
xln 10. D.
1
10 ln x.
Câu 28. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A F(x)= G(x) trên khoảng (a; b)
B Cả ba câu trên đều sai.
C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
D G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
Câu 29. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 30. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 31. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
A. a
3
3
a3
24.
Câu 32. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A. a
3√
3
a3
√ 2
2√
3√ 3
24 .
Câu 33. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3
a3
2a3
√ 3
4a3
√ 3
3 .
Câu 34. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3
− mx2+ 3x + 4 đồng biến trên R
Câu 35. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 36. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 37. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
a2+ b2 B. √ ab
2√a2+ b2 D. ab
a2+ b2
Trang 4Câu 38. Tìm giá trị lớn chất của hàm số y= x3
− 2x2− 4x+ 1 trên đoạn [1; 3]
27.
Câu 39. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 40 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A aαβ = (aα
)β B aα+β= aα.aβ C. a
α
aβ = aα D aαbα = (ab)α
Câu 41. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
A m = ±√2 B m= ±1 C m= ±√3 D m= ±3
Câu 42. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
A. 7
-2
Câu 43. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
A. 2
3.
Câu 44 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 22 triệu đồng B 3, 03 triệu đồng C 2, 20 triệu đồng D 2, 25 triệu đồng.
Câu 45. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
A. 3a
Câu 46. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?
Câu 47. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 48 Phát biểu nào sau đây là sai?
A lim un= c (Với un = c là hằng số) B lim qn= 1 với |q| > 1
C lim 1
nk = 0 với k > 1 D lim √1
n = 0
Câu 49. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 50. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
1
Câu 51. Khối đa diện đều loại {4; 3} có số mặt
Trang 5Câu 52. Hàm số y= x3
− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 53. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A (−1; 0) B (−∞; −1) và (0; +∞) C (−∞; 0) và (1; +∞) D (0; 1).
Câu 54. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A. " 2
5;+∞
!
"
−2
3;+∞
!
5
#
3
#
Câu 55. [4-1213d] Cho hai hàm số y = x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y = |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 56. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey
− 1 C xy0 = −ey+ 1 D xy0 = ey+ 1
Câu 57. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
A. 27
Câu 58. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. 8a
3√
3
a3√3
8a3√3
4a3√3
9 .
Câu 59. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 60. Cho f (x)= sin2x −cos2x − x Khi đó f0(x) bằng
Câu 61. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
√
a2+ c2
√
a2+ b2+ c2 B. c
√
a2+ b2
√
a2+ b2+ c2 C. a
√
b2+ c2
√
a2+ b2+ c2 D. abc
√
b2+ c2
√
a2+ b2+ c2
Câu 62. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A. 20
√
3
√
√ 3
√ 3
Câu 63. Khối đa diện đều loại {3; 3} có số cạnh
Câu 64. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A a
√
√ 2
a√2
√ 3
Câu 65. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
Trang 6Câu 66. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Tăng lên n lần B Không thay đổi C Giảm đi n lần D Tăng lên (n − 1) lần.
Câu 67. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 68. Xác định phần ảo của số phức z= (√2+ 3i)2
√
√ 2
Câu 69. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 70 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
B Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C Cả ba đáp án trên.
D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
Câu 71. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x
x trên đoạn [1; e
3 ] là M = m
en, trong đó n, m là các
số tự nhiên Tính S = m2+ 2n3
Câu 72. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 73. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A.
√
√
√ 13
√ 2
Câu 74. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
2
√
a2+ b2 B. ab
a2+ b2 C. √ ab
a2+ b2 D. √ 1
a2+ b2
Câu 75. [1] Tính lim 1 − n
2 2n2+ 1 bằng?
A. 1
1
1
Câu 76. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
23
5
9
25.
Câu 77. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 78. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Trang 7Câu 79. Tính lim 5
n+ 3
Câu 80. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 4 đỉnh, 6 cạnh, 4 mặt B 4 đỉnh, 8 cạnh, 4 mặt C 3 đỉnh, 3 cạnh, 3 mặt D 6 đỉnh, 6 cạnh, 4 mặt.
Câu 81. Tính lim
x→2
x+ 2
x bằng?
Câu 82. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 83. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 18
√
11 − 29
21 B Pmin = 9
√
11 − 19
9 . C Pmin = 2
√
11 − 3
3 . D Pmin= 9
√
11+ 19
Câu 84. Cho hàm số y= −x3+ 3x2
− 4 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (0; 2) B Hàm số nghịch biến trên khoảng (−∞; 2).
C Hàm số đồng biến trên khoảng (0;+∞) D Hàm số đồng biến trên khoảng (0; 2).
Câu 85. Thể tích của khối lập phương có cạnh bằng a
√ 2
3√ 2
3 .
Câu 86. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Câu 87. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 5 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 6 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.
Câu 88. Tứ diện đều thuộc loại
Câu 89. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. 3a
3a√38
a√38
3a√58
29 .
Câu 90. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3√15
a3
a3√5
25 .
Câu 91. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1 − 2e
4 − 2e. B m= 1+ 2e
4e+ 2. C m=
1 − 2e 4e+ 2. D m=
1+ 2e
4 − 2e.
Câu 92. Khối chóp ngũ giác có số cạnh là
Câu 93. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 94. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Trang 8Câu 95. Cho hàm số y= x3
− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (−∞; 0) B Hàm số nghịch biến trên khoảng (1;+∞)
C Hàm số đồng biến trên khoảng (1; 2) D Hàm số nghịch biến trên khoảng (0; 1).
Câu 96. Dãy số nào có giới hạn bằng 0?
A un= −2
3
!n B un = 6
5
!n C un = n2− 4n D un = n3− 3n
n+ 1 .
Câu 97. Cho
Z 1 0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
1
2.
Câu 98 Hình nào trong các hình sau đây không là khối đa diện?
Câu 99. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
Câu 100. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Một hình chóp tứ giác và một hình chóp ngũ giác.
B Một hình chóp tam giác và một hình chóp tứ giác.
C Hai hình chóp tam giác.
D Hai hình chóp tứ giác.
Câu 101. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
a√6
√
√ 6
3 .
Câu 102. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
A. ln 2
1
Câu 103. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b) B lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b) D lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b)
Câu 104. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?
Câu 105. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = (1; +∞) B. D = R \ {1} C. D = R D. D = (−∞; 1)
Câu 106. Tìm giới hạn lim2n+ 1
n+ 1
Câu 107. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
A. 4035
2016
2017
2018.
Câu 108. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
Trang 9cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 109. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 2x ln 2 B y0 = 2x ln x C y0 = 1
2x ln x. D y
0 = 1
ln 2.
Câu 110. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 111. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 112. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2(e) là:
A. 8
1
8
1
9.
Câu 113. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7
Câu 114. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 115. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Cả hai đều sai B Chỉ có (II) đúng C Chỉ có (I) đúng D Cả hai đều đúng.
Câu 116. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là
A. 10a
3√
3
Câu 117. Hàm số f có nguyên hàm trên K nếu
Câu 118. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
A 3 − 4
√
√
Câu 119. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 120. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A.
√
2
2 e
π
√ 3
2 e
π
2e
π
3
Câu 121. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
1
1
e2
Trang 10Câu 122. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 5a
a
2a
8a
9 .
Câu 123. [1] Giá trị của biểu thức 9log3 12
bằng
Câu 124. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 125. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s) Tính quãng đường chất điểm đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 126. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
A. 11
9
2.
Câu 127. Khối đa diện đều loại {5; 3} có số mặt
Câu 128. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. 2a
3√
6
a3√3
a3√6
a3√3
4 .
Câu 129. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 130. Tìm giá trị của tham số m để hàm số y= −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
HẾT