TOÁN PDF LATEX (Đề thi có 11 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2] Phương trình log4(x + 1)2 + 2 = log√2 √ 4 − x + log8(4[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 11 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2] Phương trình log4(x+ 1)2+ 2 = log√
2
√
4 − x+ log8(4+ x)3 có tất cả bao nhiêu nghiệm?
Câu 2. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 3. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
2a3√ 3
3√
3√ 3
3 .
Câu 4. Dãy số nào sau đây có giới hạn khác 0?
A. √1
sin n
1
n+ 1
n .
Câu 5. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
Câu 6. [4-1228d] Cho phương trình (2 log23x −log3x −1)
√
4x − m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 7. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
A.
√
√ 10
Câu 8. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
A.
√
√
√ 3
Câu 9. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos2x
lần lượt là
A 2
√
√
√ 2
Câu 10. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 11. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 12. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
a2+ b2 B. √ 1
a2+ b2 C. √ ab
2
√
a2+ b2
Câu 13. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là
A. a
3√
3
a3
3√
3√ 3
12 .
Câu 14. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Trang 2Câu 15. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối 12 mặt đều B Khối bát diện đều C Khối tứ diện đều D Khối lập phương.
Câu 16. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey+ 1 B xy0 = ey
− 1 D xy0 = −ey+ 1
Câu 17. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 18. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
√
Câu 19. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 20. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 21. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 22. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 23. Khối đa diện đều loại {3; 3} có số mặt
Câu 24. Biểu thức nào sau đây không có nghĩa
√
√
−1
Câu 25. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là
Câu 26. Tính limcos n+ sin n
n2+ 1
Câu 27. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 28. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A (−∞; −2) ∪ (−1; +∞) B −2 ≤ m ≤ −1 C (−∞; −2] ∪ [−1; +∞) D −2 < m < −1.
Câu 29. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m
mtan x+ 1 nghịch biến trên khoảng
0;π
4
Câu 30. [1] Giá trị của biểu thức 9log3 12bằng
Câu 31. Dãy số nào sau đây có giới hạn là 0?
A un= n2− 2
5n − 3n2 B un = n2− 3n
n2 C un = 1 − 2n
5n+ n2 D un = n2+ n + 1
(n+ 1)2
Trang 3Câu 32. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1
3x
3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng
√ 24
A m = −3 B m= −3, m = 4 C −3 ≤ m ≤ 4 D m= 4
Câu 33 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
f(x)g(x)dx=
Z
f(x)dx
Z
Z ( f (x) − g(x))dx=
Z
f(x)dx −
Z g(x)dx
C.
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx D.
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0
Câu 34. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 35. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 4 ln 2x
2x3ln 10 . B y
0 = 1 − 2 ln 2x
x3ln 10 . C y
0 = 1 2x3ln 10. D y
0 = 1 − 2 log 2x
x3
Câu 36 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 37. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
A −1
1
Câu 38. Dãy số nào có giới hạn bằng 0?
A un= −2
3
!n B un = n3− 3n
n+ 1 . C un = 6
5
!n D un = n2− 4n
Câu 39. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
2√e.
Câu 40. Tứ diện đều thuộc loại
Câu 41. Khối đa diện đều loại {5; 3} có số mặt
Câu 42. Tính lim
x→5
x2− 12x+ 35
25 − 5x
2
Câu 43. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2
f(x3)−√ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 44. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
A.
√
3
1
3
2.
Trang 4Câu 45. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 1 B M= e, m = 1
e. C M = e, m = 0 D M = 1
e, m = 0
Câu 46. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. 3a
3a√58
a√38
3a√38
29 .
Câu 47. [1] Tập xác định của hàm số y= 4x 2 +x−2là
A. D = [2; 1] B. D = R C. D = (−2; 1) D. D = R \ {1; 2}
Câu 48. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
x= t
y= −1
z= −t
và hai mặt phẳng (P), (Q)
lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)
A (x+ 3)2+ (y + 1)2+ (z − 3)2= 9
2+ (y − 1)2+ (z − 3)2= 9
4.
C (x − 3)2+ (y + 1)2+ (z + 3)2= 9
4. D (x+ 3)2+ (y + 1)2+ (z + 3)2= 9
4.
Câu 49. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
Câu 50. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
√ 5
Câu 51. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = R B. D = (1; +∞) C. D = R \ {1} D. D = (−∞; 1)
Câu 52 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
dx = x + C, C là hằng số B.
Z 0dx = C, C là hằng số
C.
Z
xαdx= xα+1
α + 1+ C, C là hằng số. D.
Z 1
xdx= ln |x| + C, C là hằng số
Câu 53. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
A 7
√
√
√ 2
Câu 54. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 55. [1] Đạo hàm của làm số y = log x là
A y0 = ln 10
0 = 1
xln 10. C.
1
0 = 1
x.
Câu 56. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3
a3√15
a3√15
a3√5
25 .
Trang 5Câu 57. Cho lăng trụ đều ABC.ABC có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3√
3
3√ 3
a3
3 .
Câu 58. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 59. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 60. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= 1
loga2. B log2a= loga2 C log2a= 1
log2a. D log2a= − loga2
Câu 61. Tìm m để hàm số y= x3
− 3mx2+ 3m2
có 2 điểm cực trị
Câu 62. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3
4a3√ 3
2a3√ 3
a3
6 .
Câu 63. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Câu 64. Khối đa diện đều loại {3; 3} có số cạnh
Câu 65. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±√3 B m= ±√2 C m= ±3 D m= ±1
Câu 66 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A Nhị thập diện đều B Thập nhị diện đều C Bát diện đều D Tứ diện đều.
Câu 67. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 4 ln 2x
2x3ln 10 . B y
0 = 1 2x3ln 10. C y
0 = 1 − 2 log 2x
x3 D y0 = 1 − 2 ln 2x
x3ln 10 .
Câu 68. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
A. 2017
2016
4035
Câu 69. Khối lập phương thuộc loại
Câu 70. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3
a3√3
a3√3
4 .
Câu 71. Xác định phần ảo của số phức z= (√2+ 3i)2
A 6
√
√
Câu 72. Thể tích của khối lập phương có cạnh bằng a
√ 2
√
3√ 2
3 .
Trang 6Câu 73. [2-c] Giá trị nhỏ nhất của hàm số y = (x2
− 2)e2xtrên đoạn [−1; 2] là
Câu 74. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Hai hình chóp tứ giác.
B Một hình chóp tứ giác và một hình chóp ngũ giác.
C Hai hình chóp tam giác.
D Một hình chóp tam giác và một hình chóp tứ giác.
Câu 75. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
A. 1
1
Câu 76. Hàm số f có nguyên hàm trên K nếu
C f (x) có giá trị lớn nhất trên K D f (x) xác định trên K.
Câu 77. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
Câu 78. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m ≥ 1
1
1
1
4.
Câu 79. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là
A. 10a
3√
3
Câu 80. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 81. [2] Tổng các nghiệm của phương trình 3x−1.2x2 = 8.4x−2
là
Câu 82. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Hai khối chóp tam giác.
B Một khối chóp tam giác, một khối chóp tứ giác.
C Một khối chóp tam giác, một khối chóp ngữ giác.
D Hai khối chóp tứ giác.
Câu 83. Hàm số y= x3
− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 84. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√3
2√
3√ 2
24 .
Câu 85. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = 4 +2
e. B T = e + 3 C T = e + 2
e. D T = e + 1
Trang 7Câu 86. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2
− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 87. [2-c] Giá trị nhỏ nhất của hàm số y = x2
ln x trên đoạn [e−1; e] là
A −1
1
Câu 88. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
A f0(0)= ln 10 B f0(0)= 1 C f0(0)= 1
ln 10. D f
0 (0)= 10
Câu 89. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A. a
√
2
√
√ 2
√ 3
Câu 90. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. a
8a
2a
5a
9 .
Câu 91. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2
2 = y −3
3 = z+ 4
−5 và d
0 : x+ 1
3 = y −4
−2 = z −4
−1
A. x
2 = y −2
3 = z −3
x −2
2 = y −2
3 = z −3
4 .
C. x
1 = y
1 = z −1
x −2
2 = y+ 2
2 = z −3
2 .
Câu 92. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 93. Khối đa diện đều loại {3; 4} có số cạnh
Câu 94. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu
Z
f(x)dx=
Z g(x)dx thì f (x)= g(x), ∀x ∈ R
B Nếu
Z
f(x)dx=
Z
g(x)dx thì f (x) , g(x), ∀x ∈ R
C Nếu
Z
f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R
D Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx
Câu 95. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 96. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 97. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
Trang 8Câu 98. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 99. Bát diện đều thuộc loại
Câu 100. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
a√3
a
Câu 101. [2] Đạo hàm của hàm số y = x ln x là
A y0 = x + ln x B y0 = 1 + ln x C y0 = 1 − ln x D y0 = ln x − 1
Câu 102. Khối đa diện đều loại {4; 3} có số cạnh
Câu 103. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 104. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0
A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A. 14
√
3
√
√ 3
√ 3
Câu 105. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 106. Dãy số nào sau đây có giới hạn là 0?
A. 1
3
!n
3
!n
3
!n
e
!n
Câu 107. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 108. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. a
3√
3
2a3
√ 6
a3√3
a3
√ 6
12 .
Câu 109. [4-1212d] Cho hai hàm số y= x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y= |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 110. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là
Câu 111. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 112. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Trang 9Câu 113. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
ln 2
Câu 114. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 115. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 116. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
2S h. D V = 1
3S h.
Câu 117 Phát biểu nào sau đây là sai?
n = 0
nk = 0
Câu 118. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a
√ 39
a
√ 39
a
√ 39
9 .
Câu 119. Tính lim
x→ +∞
x −2
x+ 3
3.
Câu 120. Tính lim
x→3
x2− 9
x −3
Câu 121. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. a
√
3
a√3
√
√ 3
2 .
Câu 122. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
2
a3
√ 6
a3
√ 6
a3
√ 6
6 .
Câu 123. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x)g(x)]= ab B lim
x→ +∞[ f (x) − g(x)]= a − b
C lim
x→ +∞[ f (x)+ g(x)] = a + b D lim
x→ +∞
f(x) g(x) = a
b.
Câu 124. Khối đa diện đều loại {3; 4} có số mặt
Câu 125 Các khẳng định nào sau đây là sai?
A.
Z
k f(x)dx= k
Z
f(x)dx, k là hằng số B.
Z
f(x)dx= F(x)+C ⇒
Z
f(u)dx = F(u)+C
C.
Z
f(x)dx= F(x) + C ⇒
Z
f(t)dt= F(t) + C D.
Z
f(x)dx
!0
= f (x)
Trang 10Câu 126. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 127. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
√ 3
3
√ 3
12.
Câu 128. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
d: x+ 1
2 = y −5
2 = z
−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng
dđồng thời cách A một khoảng bé nhất
A ~u = (2; 2; −1) B ~u= (1; 0; 2) C ~u= (2; 1; 6) D ~u= (3; 4; −4)
Câu 129. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
√
3, 4
√
3, 38 D 2, 4, 8.
Câu 130. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ [a; b], ta có F0(x)= f (x)
B Với mọi x ∈ [a; b], ta có F0(x)= f (x)
C Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
D Với mọi x ∈ (a; b), ta có f0(x)= F(x)
HẾT