1. Trang chủ
  2. » Tất cả

Đề ôn toán thptqg 9 (640)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thptqg 9 (640)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 152,86 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 11 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1 c] Giá trị biểu thức log2 240 log3,75 2 − log2 15 log60[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 11 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 2. Thể tích của khối lập phương có cạnh bằng a

√ 2

A V = 2a3

3√ 2

2

Câu 3. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3

a3√ 15

a3√ 5

a3√ 15

25 .

Câu 4. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 5. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 6. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

1

Câu 7. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 ≤ m ≤ 9

3

3

Câu 8. Tính lim

x→1

x3− 1

x −1

Câu 9. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị

Câu 10. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

A. 4035

2017

2016

Câu 11. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

13 .

Câu 12. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

5

a3√ 3

a3√ 5

a3√ 5

4 .

Trang 2

Câu 13. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1

2 = y

1 = z+ 1

−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất

Câu 14. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 15. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

B Nếu

Z

f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R

C Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

D Nếu

Z

f(x)dx=

Z g(x)dx thì f (x) , g(x), ∀x ∈ R

Câu 16. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 17. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 18. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3√ 2

a3√ 6

a3√ 6

6 .

Câu 19. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 20. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 21. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 22. Tứ diện đều thuộc loại

Câu 23. Tính limcos n+ sin n

n2+ 1

Câu 24. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

2x3ln 10. B y

0 = 1 − 4 ln 2x 2x3ln 10 . C y

0 = 1 − 2 ln 2x

x3ln 10 . D y

0 = 1 − 2 log 2x

x3

Câu 25. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 26 Các khẳng định nào sau đây là sai?

A.

Z

k f(x)dx= k

Z

f(x)dx, k là hằng số B.

Z

f(x)dx= F(x)+C ⇒

Z

f(u)dx = F(u)+C

C.

Z

f(x)dx= F(x) + C ⇒

Z

f(t)dt= F(t) + C D.

Z

f(x)dx

!0

= f (x)

Trang 3

Câu 27. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

2.

Câu 28. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 29. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 30. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

1

Câu 31. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 32. Khối đa diện đều loại {5; 3} có số cạnh

Câu 33. [1] Biết log6 √a= 2 thì log6abằng

Câu 34. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 35. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1

9

!x là

Câu 36. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A a

√ 57

a

√ 57

2a√57

19 .

Câu 37. [3-12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 38. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ [a; b], ta có F0(x)= f (x)

B Với mọi x ∈ (a; b), ta có f0(x)= F(x)

C Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

D Với mọi x ∈ [a; b], ta có F0(x)= f (x)

Câu 39. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là

Câu 40. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2

a2+ b2 B. ab

a2+ b2 C. √ ab

a2+ b2 D. √ 1

a2+ b2

Câu 41. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 42. Xét hai khẳng đinh sau

Trang 4

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Cả hai đều sai B Cả hai đều đúng C Chỉ có (II) đúng D Chỉ có (I) đúng.

Câu 43. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A. 4a

3√

6

a3

√ 6

3√

3√ 6

3 .

Câu 44. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 45. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 46. Dãy số nào sau đây có giới hạn là 0?

A. −5

3

!n

3

!n

e

!n

3

!n

Câu 47. Tính giới hạn lim

x→ +∞

2x+ 1

x+ 1

Câu 48. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 49. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 50. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 51. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 1

e. B M= e, m = 1 C M = e, m = 0 D M = 1

e, m = 0

Câu 52. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

√ 2

2 e

π

2e

π

√ 3

2 e

π

6

Câu 53. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

A m = ±1 B m= ±√2 C m= ±√3 D m= ±3

Câu 54. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Trang 5

Câu 55. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 56. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?

Câu 57. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 58. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

2

a2+ b2 B. √ 1

a2+ b2 C. √ ab

a2+ b2 D. ab

a2+ b2

Câu 59. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

2

Câu 60. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 61. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A a

√ 57

a√57

2a√57

19 .

Câu 62. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

Câu 63. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

1

2e.

Câu 64. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 65. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey+ 1 B xy0 = −ey

− 1 C xy0 = ey

Câu 66. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

A 8

√ 2

Câu 67. Cho I = Z 3

0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 68. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

A m = ±1 B m= ±√2 C m= ±√3 D m= ±3

Câu 69. Khối đa diện đều loại {3; 3} có số mặt

Trang 6

Câu 70. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x)+ g(x)] = a + b B lim

x→ +∞[ f (x)g(x)]= ab

C lim

x→ +∞[ f (x) − g(x)]= a − b D lim

x→ +∞

f(x) g(x) = a

b.

Câu 71. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 8a

3√

3

4a3√ 3

a3√ 3

8a3√ 3

9 .

Câu 72. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 73. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 74. Bát diện đều thuộc loại

Câu 75. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1

3x

3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng

√ 24

A m = −3, m = 4 B −3 ≤ m ≤ 4 C m= −3 D m= 4

Câu 76. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2√3 Thể tích khối nón đã cho là

A V = πa3

√ 3

6 . B V = πa3

√ 3

3 . C V = πa3

√ 3

2 . D V = πa3

√ 6

6 .

Câu 77. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Cả hai câu trên sai B Chỉ có (II) đúng C Chỉ có (I) đúng D Cả hai câu trên đúng.

Câu 78. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

A. 7

-2

Câu 79 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

B Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

C Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

D Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

Câu 80. Giá trị cực đại của hàm số y = x3

− 3x2− 3x+ 2

Trang 7

Câu 81 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

xαdx= α + 1xα+1 + C, C là hằng số B.

Z

dx = x + C, C là hằng số

C.

Z

Z 1

xdx= ln |x| + C, C là hằng số

Câu 82. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 83. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

3√ 3

a3√3

2a3√3

3 .

Câu 84. Tính lim 2n

2− 1 3n6+ n4

A. 2

Câu 85. [3-1214d] Cho hàm số y = x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

A 2

√ 3

Câu 86. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



Câu 87. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2

− 4M)2019

Câu 88. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 89. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 2017 B T = 2016

2017. C T = 1008 D T = 2016

Câu 90. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

3S h.

Câu 91. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 92. [1] Đạo hàm của hàm số y = 2x

A y0 = 2x ln 2 B y0 = 1

0 = 2x ln x D y0 = 1

2x ln x.

Câu 93. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. 4a

3√

3

a3

2a3√3

a3

6 .

Câu 94. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Trang 8

Câu 95. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 96 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 20 triệu đồng B 2, 22 triệu đồng C 2, 25 triệu đồng D 3, 03 triệu đồng.

Câu 97. [1] Tính lim 1 − n

2

2n2+ 1 bằng?

A. 1

1

1

2.

Câu 98. Tập xác định của hàm số f (x)= −x3+ 3x2

− 2 là

Câu 99. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

15

a3√ 5

3√

3√ 6

3 .

Câu 100. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 101. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

A. 2

1

e2

Câu 102. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 103. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng

A. 1

1

1

Câu 104. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 105. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 106. [1] Tập xác định của hàm số y= 4x 2 +x−2là

A. D = R B. D = R \ {1; 2} C. D = [2; 1] D. D = (−2; 1)

Câu 107. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2

2 = y −3

3 = z+ 4

−5 và d

0 : x+ 1

3 = y −4

−2 = z −4

−1

A. x −2

2 = y −2

3 = z −3

x

2 = y −2

3 = z −3

−1 .

C. x

1 = y

1 = z −1

x −2

2 = y+ 2

2 = z −3

2 .

Câu 108. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin 2 x+ 2cos 2 x

lần lượt là

A. √2 và 3 B 2√2 và 3 C 2 và 2√2 D 2 và 3.

Trang 9

Câu 109. Hàm số y= x +1

x có giá trị cực đại là

Câu 110. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2)= m có nghiệm thực

x ≥1

Câu 111. Khối đa diện đều loại {4; 3} có số cạnh

Câu 112. Tìm giá trị của tham số m để hàm số y= −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 113. Cho các dãy số (un) và (vn) và lim un = a, lim vn= +∞ thì limun

vn bằng

Câu 114. Cho

Z 2

1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 115. Cho hình chóp S ABC có dBAC = 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3√

3

2√

3√ 2

a3

√ 3

12 .

Câu 116. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 2a

3

4a3√3

4a3

2a3√3

3 .

Câu 117. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A. 12

17

Câu 118. Khối đa diện đều loại {3; 4} có số mặt

Câu 119. Khối lập phương thuộc loại

Câu 120. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

Câu 121. Tính lim

x→5

x2− 12x+ 35

25 − 5x

2

5.

Câu 122. Tính giới hạn lim2n+ 1

3n+ 2

A. 1

2

3

2.

Câu 123. Khối đa diện đều loại {3; 5} có số mặt

Câu 124. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Trang 10

Câu 125. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

2

a3√ 3

a3√ 3

a3√ 3

12 .

Câu 126. Tính lim n −1

n2+ 2

Câu 127. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Giảm đi n lần B Tăng lên (n − 1) lần C Không thay đổi D Tăng lên n lần.

Câu 128. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 129. Dãy số nào có giới hạn bằng 0?

A un= −2

3

!n B un = 6

5

!n C un = n3− 3n

n+ 1 . D un = n2− 4n

Câu 130. Khối đa diện đều loại {3; 4} có số cạnh

HẾT

Ngày đăng: 31/03/2023, 20:23