1. Trang chủ
  2. » Tất cả

Đề ôn toán thptqg 4 (459)

12 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thptqg 4 (459)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 154,97 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

A a3

3√ 3

a3

a3√ 3

3 .

Câu 2. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b Khoảng cách giữa hai đường thẳng

BB0và AC0bằng

a2+ b2 B. √ ab

2

a2+ b2 D. ab

a2+ b2

Câu 3. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 4. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

3S h. D V = 1

2S h.

Câu 5. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 6. [4] Xét hàm số f (t) = 9t

9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho

f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S

Câu 7 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

f(x)g(x)dx=Z f(x)dx

Z

Z ( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx

C.

Z

( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx D.

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0

Câu 8. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 9. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Câu 10. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

sai

Câu 11. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?

Trang 2

Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 12. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ [a; b], ta có F0(x)= f (x)

B Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

C Với mọi x ∈ (a; b), ta có f0(x)= F(x)

D Với mọi x ∈ [a; b], ta có F0(x)= f (x)

Câu 13. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 9

11 − 19

9 . B Pmin = 18

11 − 29

21 C Pmin = 2

11 − 3

3 . D Pmin= 9

11+ 19

Câu 14. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 100.(1, 01)3

3 triệu.

C m = (1, 01)3

(1, 01)3− 1 triệu. D m = 120.(1, 12)3

(1, 12)3− 1 triệu.

Câu 15. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

A. 10a

3√

3

3

Câu 16 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

u0(x)

u(x)dx= log |u(x)| + C

B Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

C F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

D F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

Câu 17. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 18. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A a3

3√ 3

a3√ 3

a3√ 2

2 .

Câu 19. Thể tích của khối lập phương có cạnh bằng a

√ 2

3√

2

Câu 20. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

Trang 3

Câu 21. [2] Tập xác định của hàm số y= (x − 1) là

A. D = R B. D = (1; +∞) C. D = R \ {1} D. D = (−∞; 1)

Câu 22. Giá trị cực đại của hàm số y = x3

− 3x2− 3x+ 2

√ 2

Câu 23. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 24. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 25. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 26. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 27. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 28. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

3

2a3√ 6

a3

√ 3

a3

√ 6

12 .

Câu 29. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 30. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 31. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 32. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 33. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

A. 3

Câu 34. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

3√

2

a3

√ 3

a3

√ 2

3√ 3

Câu 35. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là

A Đường phân giác góc phần tư thứ nhất.

B Trục ảo.

C Trục thực.

D Hai đường phân giác y= x và y = −x của các góc tọa độ

Trang 4

Câu 36. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2

và y= x

11

2 .

Câu 37. [1] Phương trình log3(1 − x)= 2 có nghiệm

Câu 38. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

3

√ 3

a

√ 3

3 .

Câu 39. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

Câu 40. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

"

2;5 2

!

2; 3

!

Câu 41. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

Câu 42. [1] Giá trị của biểu thức 9log3 12bằng

Câu 43. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 44. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 45. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 46. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối bát diện đều B Khối tứ diện đều C Khối 20 mặt đều D Khối 12 mặt đều.

Câu 47. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 48. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối tứ diện đều C Khối bát diện đều D Khối lập phương.

Câu 49. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 50. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 3, 5 triệu đồng B 50, 7 triệu đồng C 20, 128 triệu đồng D 70, 128 triệu đồng.

Câu 51. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1+ 2e

4e+ 2. B m=

1 − 2e

4 − 2e. C m= 1 − 2e

4e+ 2. D m=

1+ 2e

4 − 2e.

Trang 5

Câu 52. Tìm giá trị nhỏ nhất của hàm số y= (x2

− 2x+ 3)2

− 7

Câu 53. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

Câu 54. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

Câu 55. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 56 Phát biểu nào sau đây là sai?

A lim √1

C lim 1

nk = 0 với k > 1 D lim un= c (Với un = c là hằng số)

Câu 57. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 1

ln 10. B f

0 (0)= ln 10 C f0(0)= 10 D f0(0)= 1

Câu 58. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 59. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

1

2.

Câu 60. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 61. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 62. [1] Tính lim 1 − n

2

2n2+ 1 bằng?

A −1

1

1

3.

Câu 63. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Câu 64. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 65. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng

1728

23

1637

4913.

Câu 66. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Trang 6

Câu 67. Tính lim 5

n+ 3

Câu 68 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

Câu 69 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 20 triệu đồng B 2, 25 triệu đồng C 2, 22 triệu đồng D 3, 03 triệu đồng.

Câu 70. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1

3x

3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng

√ 24

A m = −3 B m= −3, m = 4 C −3 ≤ m ≤ 4 D m= 4

Câu 71. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

5

#

"

−2

3;+∞

!

3

# D. " 2

5;+∞

!

Câu 72. [12215d] Tìm m để phương trình 4x +√1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 < m ≤ 3

3

9

4.

Câu 73. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. 1

2;+∞

!

2

!

2;+∞

!

2

!

Câu 74. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

C Dãy số unkhông có giới hạn khi n →+∞ D lim un= 1

2.

Câu 75. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 76. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A. 5

13

√ 26

Câu 77. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= loga2 B log2a= 1

loga2. C log2a= − loga2 D log2a= 1

log2a.

Câu 78. Cho

Z 2

1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 79. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Trang 7

Câu 80. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 4 ln 2x

2x3ln 10 . B y

0 = 1 − 2 log 2x

x3 C y0 = 1 − 2 ln 2x

x3ln 10 . D y

0 = 1 2x3ln 10.

Câu 81. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 82. Tìm giới hạn lim2n+ 1

n+ 1

Câu 83. [1] Đạo hàm của làm số y = log x là

A y0 = 1

xln 10. B y

0 = 1

1

0 = ln 10

x .

Câu 84. Hàm số y= x + 1

x có giá trị cực đại là

Câu 85. Cho I = Z 3

0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 86. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

Câu 87. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và √3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

A.

√ 3

3 .

Câu 88. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

√ 3

2 . D P= −1 − i

√ 3

Câu 89. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

√ 3

2 . C V = a3

√ 3

2 . D V = 3a3√

3

Câu 90. [2] Phương trình log4(x+ 1)2+ 2 = log√

2

4 − x+ log8(4+ x)3 có tất cả bao nhiêu nghiệm?

Câu 91. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

2

a3

√ 6

a3

√ 6

a3

√ 6

6 .

Câu 92. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Trang 8

Câu 93. Cho hàm số y= x3

− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng (−∞; 0).

C Hàm số nghịch biến trên khoảng (0; 1) D Hàm số đồng biến trên khoảng (1; 2).

Câu 94. Cho hàm số y= 3 sin x − 4 sin3

x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



Câu 95. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

3

4a3√ 3

4a3

2a3√ 3

3 .

Câu 96. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là

Câu 97. Khối chóp ngũ giác có số cạnh là

Câu 98. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là

Câu 99. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 100. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 101. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 102. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3

4a3√3

2a3√3

a3

3 .

Câu 103. Dãy số nào sau đây có giới hạn là 0?

A un= n2+ n + 1

(n+ 1)2 B un = n2− 2

5n − 3n2 C un = n2− 3n

n2 D un = 1 − 2n

5n+ n2

Câu 104. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 105. Cho hình chóp S ABC có dBAC = 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3√

2

2√

3√ 3

a3√ 3

12 .

Câu 106. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 107. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

A. 1

Trang 9

Câu 108. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

2x3ln 10. B y

0 = 1 − 4 ln 2x 2x3ln 10 . C y

0 = 1 − 2 log 2x

x3 D y0 = 1 − 2 ln 2x

x3ln 10 .

Câu 109. Giá trị cực đại của hàm số y = x3− 3x+ 4 là

Câu 110. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số đỉnh của khối chóp bằng 2n+ 1

B Số mặt của khối chóp bằng 2n+1.

C Số cạnh của khối chóp bằng 2n.

D Số mặt của khối chóp bằng số cạnh của khối chóp.

Câu 111. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

A. 2

1

e2

Câu 112. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Một hình chóp tứ giác và một hình chóp ngũ giác.

B Một hình chóp tam giác và một hình chóp tứ giác.

C Hai hình chóp tam giác.

D Hai hình chóp tứ giác.

Câu 113. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3

− 2x2+ 3x − 1

Câu 114 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

Câu 115. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

Câu 116. Tính lim n −1

n2+ 2

Câu 117. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. a

57

√ 57

a√57

19 .

Câu 118. Khối đa diện đều loại {3; 3} có số cạnh

Câu 119. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng −∞;1

3

! B Hàm số nghịch biến trên khoảng (1;+∞)

C Hàm số đồng biến trên khoảng 1

3; 1

!

3; 1

!

Câu 120. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là

Trang 10

Câu 121. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.

Câu 122. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

√ 2

√ 2

3 .

Câu 123 Hình nào trong các hình sau đây không là khối đa diện?

Câu 124. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

B G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

C F(x)= G(x) trên khoảng (a; b)

D Cả ba câu trên đều sai.

Câu 125. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga

3

abằng

1

3.

Câu 126. Khối đa diện đều loại {3; 4} có số mặt

Câu 127. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 128. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 129. Dãy số nào sau đây có giới hạn là 0?

A. 1

3

!n

3

!n

3

!n

e

!n

Câu 130. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

A m = ±√3 B m= ±√2 C m= ±3 D m= ±1

HẾT

Ngày đăng: 31/03/2023, 15:50

w