1. Trang chủ
  2. » Tất cả

Đề ôn toán thptqg 2 (685)

12 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thptqg 2 (685)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 151,73 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2] Biết M(0; 2),N(2;−2) là các điểm cực trị của đồ thị hà[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y= ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 2. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 2ac

3b+ 2ac

3b+ 3ac

3b+ 3ac

c+ 2 .

Câu 3. [4-1228d] Cho phương trình (2 log23x −log3x −1)

4x − m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 4. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 5. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 6. Hàm số nào sau đây không có cực trị

A y = x −2

2x+ 1. B y= x +

1

x. C y= x3− 3x D y= x4− 2x+ 1

Câu 7. [2-c] Cho hàm số f (x)= 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

A. 1

Câu 8. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

2017

4035

2018.

Câu 9. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 10. Tính lim 5

n+ 3

Câu 11. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 12. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. a

8a

2a

5a

9 .

Câu 13. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Trang 2

Câu 14. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 15. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A Cả ba câu trên đều sai.

B F(x)= G(x) trên khoảng (a; b)

C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

D G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

Câu 16. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

Câu 17. Tính lim

x→1

x3− 1

x −1

Câu 18. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 19. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

e, m = 0 B M= e, m = 1 C M = e, m = 1

e. D M = e, m = 0

Câu 20. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Câu 21. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là

A. 2

1

9

1

5.

Câu 22. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 23. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

2.

C Dãy số unkhông có giới hạn khi n →+∞ D lim un= 0

Câu 24. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là

Câu 25. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

A a3

3√ 3

a3

a3√3

3 .

Trang 3

Câu 26. [2] Phương trình logx4 log2 5 − 12x

12x − 8 = 2 có bao nhiêu nghiệm thực?

Câu 27. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

√ 3

√ 3

3 .

Câu 28. Tập xác định của hàm số f (x)= −x3+ 3x2

− 2 là

Câu 29. [1] Giá trị của biểu thức 9log3 12bằng

Câu 30. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 < m ≤ 3

3

9

4.

Câu 31. Khối đa diện đều loại {3; 4} có số cạnh

Câu 32. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

Câu 33. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 34. [2] Tập xác định của hàm số y= (x − 1)1

A. D = R B. D = (1; +∞) C. D = (−∞; 1) D. D = R \ {1}

Câu 35. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

A. 3

5

Câu 36. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A. a

6

a

√ 6

a

√ 6

√ 6

Câu 37. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 100.1, 03

3 triệu.

C m = (1, 01)3

(1, 01)3− 1 triệu. D m = 120.(1, 12)3

(1, 12)3− 1 triệu.

Câu 38. Tính lim 2n

2− 1 3n6+ n4

Trang 4

Câu 39. Cho

1

0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

1

4.

Câu 40. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m > 1

1

1

1

4.

Câu 41. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3

√ 2

a3

√ 6

a3

√ 6

6 .

Câu 42. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 43. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 44. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 45. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 46. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

Câu 47. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là

2 − 1, phần ảo là

2, phần ảo là 1 −

√ 3

C Phần thực là

2 − 1, phần ảo là −

2, phần ảo là −

√ 3

Câu 48. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ (a; b), ta có f0(x)= F(x)

B Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

C Với mọi x ∈ [a; b], ta có F0(x)= f (x)

D Với mọi x ∈ [a; b], ta có F0(x)= f (x)

Câu 49. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là

Câu 50. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2

)?

Câu 51. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 52. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

1

e.

Câu 53. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Trang 5

Câu 54. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là

Câu 55. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 56. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 1

ln 10. B f

0 (0)= ln 10 C f0(0)= 1 D f0(0)= 10

Câu 57. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối lập phương C Khối bát diện đều D Khối 12 mặt đều.

Câu 58. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 59. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A.

"

−2

3;+∞

!

3

#

5

# D. " 2

5;+∞

!

Câu 60. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 70, 128 triệu đồng B 20, 128 triệu đồng C 3, 5 triệu đồng D 50, 7 triệu đồng.

Câu 61. [1] Biết log6 √a= 2 thì log6abằng

Câu 62. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

2; 3

!

"

2;5 2

!

Câu 63. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

9

2.

Câu 64 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx= F(x) + C ⇒

Z

f(t)dt= F(t) + C B.

Z

f(x)dx= F(x)+C ⇒

Z

f(u)dx = F(u)+C

C.

Z

k f(x)dx= kZ f(x)dx, k là hằng số D.

Z

f(x)dx

!0

= f (x)

Câu 65. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 66. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 67. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 68. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

e.

Trang 6

Câu 69. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 9 cạnh, 5 mặt B 6 đỉnh, 6 cạnh, 6 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 6 mặt.

Câu 70. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 71. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 72. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 73. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 74. [1] Giá trị của biểu thức log √31

10 bằng

1

3.

Câu 75. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

A 8

Câu 76. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey

Câu 77. Tính giới hạn lim2n+ 1

3n+ 2

A. 2

3

1

2.

Câu 78. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 79. Cho hàm số y= x3

− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (−∞; 0) B Hàm số nghịch biến trên khoảng (0; 1).

C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số đồng biến trên khoảng (1; 2).

Câu 80. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

3√

3

8a3

√ 3

a3

√ 3

8a3

√ 3

9 .

Câu 81. Tính lim

x→5

x2− 12x+ 35

25 − 5x

2

5.

Trang 7

Câu 82. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

Câu 83. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 84. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 85. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga

3

abằng

A. 1

1

Câu 86. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng

b2+ c2

a2+ b2+ c2 B. b

a2+ c2

a2+ b2+ c2 C. abc

b2+ c2

a2+ b2+ c2 D. c

a2+ b2

a2+ b2+ c2

Câu 87. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A. a

2

√ 2

4 .

Câu 88 Trong các khẳng định sau, khẳng định nào sai?

A Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

B.

Z

u0(x)

u(x)dx= log |u(x)| + C

C F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

D F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

Câu 89. Tính lim n −1

n2+ 2

Câu 90. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Một hình chóp tam giác và một hình chóp tứ giác.

B Hai hình chóp tứ giác.

C Một hình chóp tứ giác và một hình chóp ngũ giác.

D Hai hình chóp tam giác.

Câu 91. Hàm số y= x + 1

x có giá trị cực đại là

Câu 92. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

√ 3

√ 3

3

4.

Câu 93. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3)−√ 6

3x+ 1 Tính

Z 1

0

f(x)dx

Trang 8

A −1 B 2 C 4 D 6.

Câu 94. [2] Đạo hàm của hàm số y = x ln x là

A y0 = 1 − ln x B y0 = ln x − 1 C y0 = x + ln x D y0 = 1 + ln x

Câu 95. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

A. 1

1

Câu 96. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 97. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

23

9

5

16.

Câu 98. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 99. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1

2 = y

1 = z+ 1

−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất

Câu 100. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 101. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 102. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A a

√ 57

a√57

2a√57

19 .

Câu 103. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

A. a

2

a√2

√ 3

Câu 104. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số đỉnh của khối chóp bằng số cạnh của khối chóp.

B Số cạnh của khối chóp bằng số mặt của khối chóp.

C Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

D Số đỉnh của khối chóp bằng số mặt của khối chóp.

Câu 105. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 106. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là

A 2√3, 4

3, 38 B 2, 4, 8 C 8, 16, 32 D 6, 12, 24.

Trang 9

Câu 107. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 108. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2

2 = y −3

3 = z+ 4

−5 và d

0 : x+ 1

3 = y −4

−2 = z −4

−1

A. x −2

2 = y −2

3 = z −3

x

1 = y

1 = z −1

1 .

C. x −2

2 = y+ 2

2 = z −3

x

2 = y −2

3 = z −3

−1 .

Câu 109. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối bát diện đều C Khối 20 mặt đều D Khối tứ diện đều.

Câu 110. [4] Xét hàm số f (t) = 9t

9t + m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho f (x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y≤ e(x+ y) Tìm số phần tử của S

Câu 111. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 112. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối 12 mặt đều B Khối lập phương C Khối bát diện đều D Khối tứ diện đều.

Câu 113. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 114. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π

!x3−3mx2+m

nghịch biến trên khoảng (−∞;+∞)

Câu 115. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A. a

3

a√3

2a√3

√ 3

Câu 116. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+ qlog23x+ 1+4m−

1= 0 có ít nhất một nghiệm thuộc đoạnh

1; 3

3i

Câu 117. Cho hai đường thẳng phân biệt d và d0đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 118. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 119. Trong không gian cho hai điểm A, B cố định và độ dài AB= 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?

3

2.

Câu 120. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

a2+ b2 B. ab

a2+ b2 C. √ ab

2√a2+ b2

Trang 10

Câu 121. Khối lập phương thuộc loại

Câu 122. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 6 cạnh, 4 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 4 đỉnh, 8 cạnh, 4 mặt D 3 đỉnh, 3 cạnh, 3 mặt.

Câu 123. Tính lim

x→−∞

x+ 1 6x − 2 bằng

A. 1

1

1

3.

Câu 124. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3√ 3

a3

a3√ 3

8 .

Câu 125. [1] Đạo hàm của làm số y = log x là

0 = ln 10

0 = 1

xln 10. D y

0 = 1

x.

Câu 126. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

2

Câu 127. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 128. Hàm số f có nguyên hàm trên K nếu

Câu 129 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 130. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

HẾT

Ngày đăng: 31/03/2023, 15:31

w