TOÁN PDF LATEX (Đề thi có 11 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hì[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 11 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Một tứ diện đều và bốn hình chóp tam giác đều.
B Năm tứ diện đều.
C Năm hình chóp tam giác đều, không có tứ diện đều.
D Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 2. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 4 ln 2x
2x3ln 10 . B y
0 = 1 2x3ln 10. C y
0 = 1 − 2 log 2x
x3 D y0 = 1 − 2 ln 2x
x3ln 10 .
Câu 3. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 4. [3] Cho hàm số f (x)= 4x
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 2016
Câu 5. Dãy số nào sau đây có giới hạn khác 0?
A. n+ 1
sin n
1
1
√
n.
Câu 6. Hàm số y= −x3+ 3x2
− 1 đồng biến trên khoảng nào dưới đây?
Câu 7. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3
a3√ 15
a3√ 5
25 .
Câu 8. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3
a3
√ 3
a3
√ 3
a3
√ 3
4 .
Câu 9. [12210d] Xét các số thực dương x, y thỏa mãn log31 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 9
√
11 − 19
9 . B Pmin = 18
√
11 − 29
21 C Pmin = 2
√
11 − 3
3 . D Pmin= 9
√
11+ 19
Câu 10. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là
Câu 11. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 12. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Trang 2Câu 13. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 14. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?
Câu 15. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. a
√
3
√
√ 3
a√3
3 .
Câu 16. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
a3
√ 5
a3
√ 5
a3
√ 5
4 .
Câu 17. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối bát diện đều B Khối tứ diện đều C Khối 12 mặt đều D Khối lập phương.
Câu 18. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
Câu 19. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 20. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±√3 B m= ±3 C m= ±√2 D m= ±1
Câu 21. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 22. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là
1
1
2
5.
Câu 23. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
√ 2
Câu 24. [1] Đạo hàm của làm số y = log x là
A y0 = ln 10
0 = 1
xln 10. C y
0 = 1
1
10 ln x.
Câu 25. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 26. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 27. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 28 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
Trang 35 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 22 triệu đồng B 2, 20 triệu đồng C 2, 25 triệu đồng D 3, 03 triệu đồng.
Câu 29. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
Câu 30. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Cả hai đều sai B Chỉ có (I) đúng C Cả hai đều đúng D Chỉ có (II) đúng.
Câu 31. Cho
Z 2
1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 32. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 33. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
Câu 34 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
Câu 35. [2] Cho hàm số f (x)= x ln2
x Giá trị f0(e) bằng
Câu 36 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
B Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
C Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
D Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
Câu 37 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
[ f (x) − g(x)]dx=
Z
f(x)dx −
Z g(x)dx, với mọi f (x), g(x) liên tục trên R
B.
Z
[ f (x)+ g(x)]dx =
Z
f(x)dx+
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
C.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
D.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
Câu 38 Phát biểu nào sau đây là sai?
A lim1
nk = 0
Trang 4Câu 39. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
Câu 40. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1
2 = y
1 = z+ 1
−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất
Câu 41. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Một khối chóp tam giác, một khối chóp tứ giác.
B Một khối chóp tam giác, một khối chóp ngữ giác.
C Hai khối chóp tứ giác.
D Hai khối chóp tam giác.
Câu 42. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3√ 3
a3√ 3
a3√ 3
24 .
Câu 43. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
3
a3
a3
6 .
Câu 44. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 45. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 46. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Tăng lên n lần B Tăng lên (n − 1) lần C Không thay đổi D Giảm đi n lần.
Câu 47 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
B F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
C Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D Cả ba đáp án trên.
Câu 48. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 49. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
A. 1
ln 2
Câu 50. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
√
Trang 5Câu 51. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 52. Tính limcos n+ sin n
n2+ 1
Câu 53. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
5
4 < m < 0
Câu 54. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 3ac
3b+ 2ac
3b+ 3ac
3b+ 2ac
c+ 2 .
Câu 55. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A. 5
√
13
√
√
√ 2
Câu 56. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là
Câu 57. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −∞; −1
2
!
2;+∞
!
2;+∞
!
2
!
Câu 58. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3√3
a3
√ 6
a3
√ 6
8 .
Câu 59. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là
Câu 60. Hàm số y= x + 1
x có giá trị cực đại là
Câu 61. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0
là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
Câu 62. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1
9
!x là
Câu 63. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3√
3
3√ 3
a3
3 .
Câu 64 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C B. Z f(x)dx
!0
= f (x)
C.
Z
f(x)dx= F(x) + C ⇒
Z
f(t)dt= F(t) + C D.
Z
k f(x)dx= k
Z
f(x)dx, k là hằng số
Trang 6Câu 65. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3√
3
a3
3√ 3
3 .
Câu 66. [1] Phương trình log3(1 − x)= 2 có nghiệm
Câu 67. Tính lim
x→2
x+ 2
x bằng?
Câu 68. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
2.
Câu 69. Hàm số f có nguyên hàm trên K nếu
A f (x) có giá trị nhỏ nhất trên K B f (x) có giá trị lớn nhất trên K.
Câu 70 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
B Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
C.
Z
u0(x)
u(x)dx= log |u(x)| + C
D F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
Câu 71. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
15
a3√6
a3√5
3√ 6
Câu 72. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
"
2;5 2
! D. " 5
2; 3
!
Câu 73. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
√ 5
Câu 74. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
Câu 75. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
Câu 76. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là
A. a
3√
3
a3
3√
3√ 3
3 .
Câu 77 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0 B.
Z
f(x)g(x)dx=
Z
f(x)dx Z g(x)dx
Trang 7C. ( f (x)+ g(x))dx = f(x)dx+ g(x)dx D. ( f (x) − g(x))dx= f(x)dx − g(x)dx.
Câu 78. Dãy số nào sau đây có giới hạn là 0?
A un= 1 − 2n
5n+ n2 B un = n2+ n + 1
(n+ 1)2 C un = n2− 2
5n − 3n2 D un = n2− 3n
n2
Câu 79. Tính lim
x→5
x2− 12x+ 35
25 − 5x
2
5.
Câu 80. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
6
a3√3
a3√2
a3√3
48 .
Câu 81. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 82. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là
Câu 83. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 84. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 85. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 86. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
Câu 87. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 88. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
− 2; m= 1
C M = e−2+ 2; m = 1 D M = e2− 2; m = e−2+ 2
Câu 89. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
2.
Câu 90. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 4 ln 2x
2x3ln 10 . B y
0 = 1 − 2 ln 2x
x3ln 10 . C y
0 = 1 − 2 log 2x
x3 D y0 = 1
2x3ln 10.
Câu 91. Khối đa diện đều loại {5; 3} có số mặt
Câu 92. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
Trang 8(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A Cả hai câu trên đúng B Chỉ có (II) đúng C Chỉ có (I) đúng D Cả hai câu trên sai.
Câu 93. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối lập phương B Khối tứ diện đều C Khối 12 mặt đều D Khối bát diện đều.
Câu 94. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
6.
Câu 95. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = (−∞; 1) B. D = (1; +∞) C. D = R D. D = R \ {1}
Câu 96. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga
3
√
abằng
A −1
1
Câu 97. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey
− 1 D xy0 = ey+ 1
Câu 98. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 50, 7 triệu đồng B 20, 128 triệu đồng C 3, 5 triệu đồng D 70, 128 triệu đồng.
Câu 99. Cho hàm số y= 3 sin x − 4 sin3
x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 100. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
2
2e3
Câu 101. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A. a
√
57
2a√57
a√57
√ 57
Câu 102. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối bát diện đều B Khối tứ diện đều C Khối 12 mặt đều D Khối lập phương.
Câu 103. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là
3√ 3
3 .
Câu 104. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 105. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x) = |x − 1| Biết f (0) = 3 Tính f (2)+ f (4)?
Câu 106. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
2
Trang 9Câu 107. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là
Câu 108. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2là số ảo là
A Trục ảo.
B Đường phân giác góc phần tư thứ nhất.
C Trục thực.
D Hai đường phân giác y= x và y = −x của các góc tọa độ
Câu 109. Tính lim 5
n+ 3
Câu 110. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= − loga2 B log2a= 1
log2a. C log2a= 1
loga2. D log2a= loga2
Câu 111. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1079
1728
4913.
Câu 112. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 113. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
9 .
Câu 114. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 115. [2] Đạo hàm của hàm số y = x ln x là
A y0 = 1 + ln x B y0 = ln x − 1 C y0 = 1 − ln x D y0 = x + ln x
Câu 116. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 117. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1 thỏa mãn |z1− 2 − i| = 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1gần giá trị nào nhất?
Câu 118. Khối đa diện đều loại {4; 3} có số mặt
Câu 119. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ (a; b), ta có f0(x)= F(x)
B Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
C Với mọi x ∈ [a; b], ta có F0(x)= f (x)
D Với mọi x ∈ [a; b], ta có F0(x)= f (x)
Câu 120. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Trang 10Câu 121. [2-c] Cho hàm số f (x) = 9
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
Câu 122. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 123. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A. " 2
5;+∞
!
"
−2
3;+∞
!
3
#
5
#
Câu 124. Cho khối lăng trụ đứng ABC.A0B0C0có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = a3
√
3
2 . B V = 6a3 C V = 3a3
√ 3
2 . D V = 3a3√
3
Câu 125. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
Câu 126. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
2.
Câu 127. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 128. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 129. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 130. Tìm giới hạn lim2n+ 1
n+ 1
HẾT