Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [3 12217d] Cho hàm số y = ln 1 x + 1 Trong các khẳng định sau đây, khẳng định nào đúng? A xy′ = ey + 1 B x[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey+ 1 B xy0 = ey
− 1 D xy0 = −ey+ 1
Câu 2. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2√3 Thể tích khối nón đã cho là
A V = πa3
√ 6
6 . B V = πa3
√ 3
2 . C V = πa3
√ 3
3 . D V = πa3
√ 3
6 .
Câu 3. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 4. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối tứ diện đều B Khối bát diện đều C Khối lập phương D Khối 12 mặt đều.
Câu 5. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 1
2x ln x. B y
0 = 1
0 = 2x ln x D y0 = 2x ln 2
Câu 6. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y= (x2− 3)extrên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Câu 7. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Câu 8. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Câu 9. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2là số ảo là
A Trục thực.
B Đường phân giác góc phần tư thứ nhất.
C Hai đường phân giác y= x và y = −x của các góc tọa độ
D Trục ảo.
Câu 10. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là
3√ 3
Câu 11. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
A. 1
√
Câu 12. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 13. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 14. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
A. a
3
3
a3
24.
Trang 2Câu 15. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 16. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m
mtan x+ 1 nghịch biến trên khoảng
0;π
4
Câu 17. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
A Dãy số unkhông có giới hạn khi n →+∞ B lim un= 1
2.
Câu 18. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 19. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 3, 5 triệu đồng B 50, 7 triệu đồng C 20, 128 triệu đồng D 70, 128 triệu đồng.
Câu 20 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
B Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
C Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
D Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
Câu 21. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
Câu 22. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
5
#
3
# C. " 2
5;+∞
!
"
−2
3;+∞
!
Câu 23 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 22 triệu đồng B 3, 03 triệu đồng C 2, 25 triệu đồng D 2, 20 triệu đồng.
Câu 24. Khẳng định nào sau đây đúng?
A Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B Hình lăng trụ đứng là hình lăng trụ đều.
C Hình lăng trụ tứ giác đều là hình lập phương.
D Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Trang 3Câu 25. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
√
Câu 26. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 27. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 5a
2a
a
8a
9 .
Câu 28. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 29. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 30 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
dx = x + C, C là hằng số B.
Z 0dx = C, C là hằng số
C.
Z
xαdx= α + 1xα+1 + C, C là hằng số D.
Z 1
xdx= ln |x| + C, C là hằng số
Câu 31. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 32. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 33. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Hai khối chóp tứ giác.
B Một khối chóp tam giác, một khối chóp tứ giác.
C Một khối chóp tam giác, một khối chóp ngữ giác.
D Hai khối chóp tam giác.
Câu 34. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = a3
√
3
2 . B V = 6a3 C V = 3a3
√ 3
2 . D V = 3a3√
3
Câu 35. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
2.
Câu 36. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
A f0(0)= 10 B f0(0)= ln 10 C f0(0)= 1
ln 10. D f
0 (0)= 1
Trang 4Câu 37. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 38. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
Câu 39. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng 2n+ 1
B Số mặt của khối chóp bằng số cạnh của khối chóp.
C Số mặt của khối chóp bằng 2n+1.
D Số cạnh của khối chóp bằng 2n.
Câu 40. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3
a3√3
a3√3
a3√3
4 .
Câu 41. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
Câu 42. [1] Đạo hàm của làm số y = log x là
A y0 = 1
xln 10. B.
1
0 = ln 10
0 = 1
x.
Câu 43. Khối đa diện đều loại {5; 3} có số cạnh
Câu 44. Tính lim
x→3
x2− 9
x −3
Câu 45. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A 8
√
√
√ 3
20√3
3 .
Câu 46. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (−∞; 2) B Hàm số đồng biến trên khoảng (0;+∞)
C Hàm số nghịch biến trên khoảng (0; 2) D Hàm số đồng biến trên khoảng (0; 2).
Câu 47. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 3 lần B Tăng gấp 9 lần C Tăng gấp 18 lần D Tăng gấp 27 lần.
Câu 48. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
2
√
a2+ b2 C. √ ab
a2+ b2 D. ab
a2+ b2
Câu 49. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 50. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là −3, phần ảo là 4 B Phần thực là 3, phần ảo là −4.
C Phần thực là −3, phần ảo là −4 D Phần thực là 3, phần ảo là 4.
Trang 5Câu 51. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 52. Hàm số f có nguyên hàm trên K nếu
A f (x) có giá trị nhỏ nhất trên K B f (x) xác định trên K.
Câu 53. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 54. Dãy số nào sau đây có giới hạn khác 0?
A. 1
sin n
n+ 1
1
√
n.
Câu 55. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x +3trên đoạn [0; 2] là
Câu 56. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
A 2
√
√
√ 3
Câu 57. Giá trị cực đại của hàm số y = x3− 3x+ 4 là
Câu 58. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
2 .
Câu 59. Tính lim 2n
2− 1 3n6+ n4
Câu 60. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu
Z
f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R
B Nếu f (x)= g(x) + 1, ∀x ∈ R thì
Z
f0(x)dx=
Z
g0(x)dx
C Nếu
Z
f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R
D Nếu
Z
f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R
Câu 61. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 62. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A a3
√
3√ 3
a3√2
a3√3
4 .
Câu 63. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Trang 6Câu 64. Tính giới hạn lim2n+ 1
3n+ 2
2
3
2.
Câu 65. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 66. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 67. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
A. 2
1 2e3
Câu 68. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 69. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 70. Hàm số y= x + 1
x có giá trị cực đại là
Câu 71. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 72. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
Câu 73. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 74. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
Câu 75. [4] Xét hàm số f (t)= 9t
9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho
f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S
Câu 76. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 77. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
7
a2√5
a2√2
11a2
32 .
Trang 7Câu 78. Tứ diện đều thuộc loại
Câu 79. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. 3a
√
38
3a
3a√58
a√38
29 .
Câu 80. Khối chóp ngũ giác có số cạnh là
Câu 81. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. a
√
57
√
√ 57
a√57
19 .
Câu 82. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
5
Câu 83. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối 20 mặt đều B Khối 12 mặt đều C Khối bát diện đều D Khối tứ diện đều.
Câu 84. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Câu 85. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 86. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin 2 x+ 2cos 2 x
lần lượt là
√
√
√
2 và 3
Câu 87. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 88. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
5
a3
√ 5
a3
√ 5
a3
√ 3
12 .
Câu 89. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
3S h. D V = 1
2S h.
Câu 90. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
Câu 91. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Trang 8Câu 92. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. 4a
3√
3
8a3√3
8a3√3
a3√3
9 .
Câu 93. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
6.
Câu 94. Cho I = Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 95. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
5
3√
3√ 15
a3
√ 6
3 .
Câu 96. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
11
Câu 97. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
√
3
a
a
2.
Câu 98. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 99. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A (−∞; −2] ∪ [−1; +∞) B −2 < m < −1 C (−∞; −2) ∪ (−1; +∞) D −2 ≤ m ≤ −1.
Câu 100. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số cạnh của khối chóp bằng số mặt của khối chóp.
B Số đỉnh của khối chóp bằng số mặt của khối chóp.
C Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 101. Cho hai đường thẳng phân biệt d và d0đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 102. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x) − g(x)]= a − b B lim
x→ +∞[ f (x)+ g(x)] = a + b
C lim
x→ +∞[ f (x)g(x)]= ab D lim
x→ +∞
f(x) g(x) = a
b.
Câu 103. [1] Tập xác định của hàm số y= 2x−1là
A. D = (0; +∞) B. D = R C. D = R \ {0} D. D = R \ {1}
Trang 9Câu 104. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b, AA0 = c Khoảng cách từ điểm
Ađến đường thẳng BD0bằng
A. abc
√
b2+ c2
√
a2+ b2+ c2 B. c
√
a2+ b2
√
a2+ b2+ c2 C. b
√
a2+ c2
√
a2+ b2+ c2 D. a
√
b2+ c2
√
a2+ b2+ c2
Câu 105. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng 1
3; 1
! B Hàm số nghịch biến trên khoảng 1
3; 1
!
C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số nghịch biến trên khoảng −∞;1
3
!
Câu 106. Tập xác định của hàm số f (x)= −x3+ 3x2
− 2 là
Câu 107. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 108. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b) B lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b) D lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b)
Câu 109. Tìm giới hạn lim2n+ 1
n+ 1
Câu 110. [1] Tính lim 1 − n
2 2n2+ 1 bằng?
A −1
1
1
2.
Câu 111. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e + 1 B T = e + 2
e. C T = 4 + 2
e. D T = e + 3
Câu 112 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
B.
Z
u0(x)
u(x)dx= log |u(x)| + C
C Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
D F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
Câu 113. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
1
Câu 114. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 115. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
Trang 10ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = 120.(1, 12)3
(1, 12)3− 1 triệu. B m = (1, 01)3
(1, 01)3− 1 triệu.
C m = 100.1, 03
3 triệu.
Câu 116. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey+ 1 B xy0 = −ey+ 1 C xy0 = ey
− 1
Câu 117. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối lập phương B Khối bát diện đều C Khối tứ diện đều D Khối 12 mặt đều.
Câu 118. Dãy số nào sau đây có giới hạn là 0?
A un= n2+ n + 1
(n+ 1)2 B un = 1 − 2n
5n+ n2 C un = n2− 2
5n − 3n2 D un = n2− 3n
n2
Câu 119. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
A -2
7
Câu 120. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3
abằng
1
Câu 121. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 122. Khối đa diện đều loại {3; 5} có số mặt
Câu 123. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
Câu 124. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 0 B M= e, m = 1
e. C M = e, m = 1 D M = 1
e, m = 0
Câu 125. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
A. 3
Câu 126. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 127. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
√
2
a
a
2a
3 .
Câu 128. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±3 B m= ±√3 C m= ±√2 D m= ±1