1. Trang chủ
  2. » Tất cả

Bài tập toán thpt 5 (533)

12 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Bài Tập Toán Thpt
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Bài tập
Định dạng
Số trang 12
Dung lượng 151,66 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính lim x→+∞ x + 1 4x + 3 bằng A 1 4 B 1 3 C 1 D 3 Câu 2 [3 c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

A. 1

1

Câu 2. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 3. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối tứ diện đều C Khối bát diện đều D Khối 20 mặt đều.

Câu 4. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 5 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

k f(x)dx= f

Z

f(x)dx, k ∈ R, k , 0 B.

Z ( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx

C.

Z

f(x)g(x)dx=Z f(x)dx

Z

Z ( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx

Câu 6. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

Câu 7. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

A 8

√ 3

Câu 8. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

5

a3√3

a3√5

a3√5

6 .

Câu 9. Tính lim

x→−∞

x+ 1 6x − 2 bằng

A. 1

1

1

2.

Câu 10. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 6 cạnh, 6 mặt.

Câu 11. [1] Tính lim1 − 2n

3n+ 1 bằng?

2

2

3.

Câu 12. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là

3, 38

Trang 2

Câu 13. [3] Cho hình lập phương ABCD.A BC D có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A a

√ 3

a√3

a√3

2 .

Câu 14. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 15. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

A. 9

11

Câu 16. Khối đa diện đều loại {3; 5} có số mặt

Câu 17. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

A −1

1 2e.

Câu 18. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Câu 19. [1] Giá trị của biểu thức log √31

10 bằng

A. 1

1

Câu 20. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= 1

loga2. B log2a= 1

log2a. C log2a= − loga2 D log2a= loga2

Câu 21. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

Câu 22. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

A. 1

Câu 23. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 24. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

1

e3

Câu 25. Khối đa diện đều loại {4; 3} có số mặt

Câu 26. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 27. Thể tích của khối lập phương có cạnh bằng a√2

3√ 2

√ 2

Câu 28. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1 − 2e

4e+ 2. B m=

1+ 2e

4 − 2e. C m= 1 − 2e

4 − 2e. D m= 1+ 2e

4e+ 2.

Trang 3

Câu 29 Phát biểu nào sau đây là sai?

A lim 1

nk = 0 với k > 1 B lim √1

n = 0

C lim un= c (Với un = c là hằng số) D lim qn= 1 với |q| > 1

Câu 30. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 2

a3√3

2√ 2

Câu 31. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 32. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

A. 3a

Câu 33. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số đỉnh của khối chóp bằng số cạnh của khối chóp.

B Số đỉnh của khối chóp bằng số mặt của khối chóp.

C Số cạnh của khối chóp bằng số mặt của khối chóp.

D Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

Câu 34. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A. 2a

3√

3

3√

3√ 3

a3√ 3

6 .

Câu 35. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng (0;+∞) B Hàm số đồng biến trên khoảng (0; 2).

C Hàm số nghịch biến trên khoảng (0; 2) D Hàm số nghịch biến trên khoảng (−∞; 2).

Câu 36 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

u0(x)

u(x)dx= log |u(x)| + C

B F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

C F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

D Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

Câu 37. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

-2

3.

Câu 38. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Trang 4

Câu 39. Cho hàm số y= x3+ 3x2

Mệnh đề nào sau đây là đúng?

A Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

B Hàm số nghịch biến trên khoảng (−2; 1).

C Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

D Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

Câu 40. Khối đa diện đều loại {5; 3} có số cạnh

Câu 41. Tính giới hạn lim2n+ 1

3n+ 2

A. 1

2

3

Câu 42. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 4 ln 2x

2x3ln 10 . B y

2x3ln 10. C y

0 = 1 − 2 log 2x

x3 D y0 = 1 − 2 ln 2x

x3ln 10 .

Câu 43. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

3√ 3

3

Câu 44. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x +3trên đoạn [0; 2] là

Câu 45. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 46. Tìm giới hạn lim2n+ 1

n+ 1

Câu 47. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 4a

3√

3

2a3√ 3

2a3

4a3

3 .

Câu 48. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

A −1

1

Câu 49. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

4 < m < 0 C m ≤ 0 D m > −5

4.

Câu 50. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 51. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

2016

2017

2018.

Câu 52. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Trang 5

Câu 53. Hàm số nào sau đây không có cực trị

A y = x +1

x. B y= x4

− 2x+ 1 C y= x −2

2x+ 1. D y= x3− 3x.

Câu 54. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Cả hai câu trên đúng B Chỉ có (II) đúng C Cả hai câu trên sai D Chỉ có (I) đúng.

Câu 55. Tính lim

x→3

x2− 9

x −3

Câu 56. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 57. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 58. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 59. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3

a3√3

a3√3

4 .

Câu 60 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C B. Z f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C

C.

Z

f(x)dx

!0

Z

k f(x)dx= kZ f(x)dx, k là hằng số

Câu 61. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 62. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

e.

Câu 63. Khẳng định nào sau đây đúng?

A Hình lăng trụ tứ giác đều là hình lập phương.

B Hình lăng trụ đứng là hình lăng trụ đều.

C Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

D Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

Câu 64. Tính giới hạn lim

x→ +∞

2x+ 1

x+ 1

Trang 6

Câu 65. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

A. 5

2.

Câu 66. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 67. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 68. Tính limcos n+ sin n

n2+ 1

Câu 69. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3

√ 6

a3

√ 2

a3

√ 6

6 .

Câu 70. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 71. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Một hình chóp tam giác và một hình chóp tứ giác.

B Hai hình chóp tứ giác.

C Một hình chóp tứ giác và một hình chóp ngũ giác.

D Hai hình chóp tam giác.

Câu 72. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A a3

3√ 3

a3√2

a3√2

4 .

Câu 73. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 74. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và √3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

√ 3

Câu 75. [2] Tập xác định của hàm số y= (x − 1)1

A. D = (1; +∞) B. D = (−∞; 1) C. D = R D. D = R \ {1}

Câu 76. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

A 2

Câu 77. Dãy số nào sau đây có giới hạn là 0?

A. 4

e

!n

3

!n

3

!n

3

!n

Câu 78. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Trang 7

Câu 79. Tính lim

x→1

x3− 1

x −1

Câu 80. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Câu 81. Giá trị cực đại của hàm số y = x3− 3x+ 4 là

Câu 82. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A. 2a

57

√ 57

a√57

17 .

Câu 83. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng

A. a

3

a

a

2.

Câu 84. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

Câu 85. [1] Giá trị của biểu thức 9log3 12bằng

Câu 86. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2] ∪ [−1; +∞) B (−∞; −2)∪(−1; +∞) C −2 < m < −1 D −2 ≤ m ≤ −1.

Câu 87. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 88. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 89. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. 3a

3a√38

a√38

3a√58

29 .

Câu 90. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019

Câu 91. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

A. 7

5

Câu 92. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Trang 8

Câu 93. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là

A Trục thực.

B Đường phân giác góc phần tư thứ nhất.

C Hai đường phân giác y= x và y = −x của các góc tọa độ

D Trục ảo.

Câu 94. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

2

a2√7

a2√5

11a2

32 .

Câu 95. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

A. 1

3.

Câu 96. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

√ 6

√ 3

Câu 97 Hình nào trong các hình sau đây không là khối đa diện?

Câu 98. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng

A T = e + 3 B T = e + 2

e. C T = e + 1 D T = 4 + 2

e.

Câu 99. [1] Tập xác định của hàm số y= 4x2+x−2là

A. D = (−2; 1) B. D = [2; 1] C. D = R \ {1; 2} D. D = R

Câu 100. Xác định phần ảo của số phức z= (√2+ 3i)2

Câu 101. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 102. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc

60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. 2a

3√

3

a3

√ 3

5a3

√ 3

4a3

√ 3

3 .

Câu 103. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 6

a3

√ 6

a3

√ 6

48 .

Câu 104. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 105. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Trang 9

Câu 106. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 107. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 2

5n − 3n2 B un = n2+ n + 1

(n+ 1)2 C un = 1 − 2n

5n+ n2 D un = n2− 3n

n2

Câu 108. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m ≥ 1

1

1

1

4.

Câu 109. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 110. Khối chóp ngũ giác có số cạnh là

Câu 111. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0 là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng vi khuẩn đạt 100.000 con?

Câu 112 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

B Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

C Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

D Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

Câu 113. [1] Biết log6 √a= 2 thì log6abằng

Câu 114. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 115 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aαβ = (aα

B aαbα = (ab)α

α

aβ = aα D aα+β = aα.aβ

Câu 116. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Chỉ có (II) đúng B Cả hai đều sai C Chỉ có (I) đúng D Cả hai đều đúng.

Câu 117. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A. 3

√ 3

√ 3

√ 3

4 .

Câu 118. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Trang 10

Câu 119. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

C Dãy số unkhông có giới hạn khi n →+∞ D lim un= 1

2.

Câu 120. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 0 B M= e, m = 1 C M = 1

e, m = 0 D M = e, m = 1

e.

Câu 121. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 122. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 123. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối tứ diện đều B Khối 12 mặt đều C Khối bát diện đều D Khối 20 mặt đều.

Câu 124. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3) − √ 6

3x+ 1 Tính

Z 1

0

f(x)dx

Câu 125. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 126. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

2

a2+ b2 C. √ 1

a2+ b2 D. √ ab

a2+ b2

Câu 127. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối bát diện đều B Khối 12 mặt đều C Khối tứ diện đều D Khối lập phương.

Câu 128. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

Câu 129. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 130. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b, AA0 = c Khoảng cách từ điểm

Ađến đường thẳng BD0bằng

A. abc

b2+ c2

a2+ b2+ c2 B. b

a2+ c2

a2+ b2+ c2 C. a

b2+ c2

a2+ b2+ c2 D. c

a2+ b2

a2+ b2+ c2

HẾT

Ngày đăng: 30/03/2023, 21:21

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN