Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tìm giá trị lớn nhất của hàm số y = √ x + 3 + √ 6 − x A 3 B 3 √ 2 C 2 + √ 3 D 2 √ 3 Câu 2 Thể tích của khố[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
√ 3
Câu 2. Thể tích của khối lập phương có cạnh bằng a√2
3√ 2
3√ 2
Câu 3. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến∆ Lấy A, B thuộc
∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A. a
√
2
√
√ 2
√ 2
Câu 4. Tứ diện đều thuộc loại
Câu 5. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. a
3√
3
5a3√ 3
2a3√ 3
4a3√ 3
3 .
Câu 6. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD= 2a, AB = a Gọi H là trung điểm của
AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
A. 2a
3√
3
2a3
4a3
4a3√ 3
3 .
Câu 7. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Hai hình chóp tam giác.
B Hai hình chóp tứ giác.
C Một hình chóp tam giác và một hình chóp tứ giác.
D Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 8. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
A −1
1
Câu 9. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 10 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
B Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
C Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
D Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
Trang 2Câu 11. Cho hàm số y= x3+ 3x2
Mệnh đề nào sau đây là đúng?
A Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
B Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
C Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
D Hàm số nghịch biến trên khoảng (−2; 1).
Câu 12. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 13. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→a − f(x)= a
C lim
x→a + f(x)= lim
x→a − f(x)= +∞ D f (x) có giới hạn hữu hạn khi x → a.
Câu 14. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 15. Tính lim 2n
2− 1 3n6+ n4
Câu 16. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 17. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 18. Dãy số nào có giới hạn bằng 0?
A un= n3− 3n
n+ 1 . B un = −2
3
!n C un = 6
5
!n D un = n2− 4n
Câu 19. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 20. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 5 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 5 mặt D 6 đỉnh, 6 cạnh, 6 mặt.
Câu 21. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 22. Tính limcos n+ sin n
n2+ 1
Câu 23. Cho I = Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 24. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Trang 3Câu 25 Hình nào trong các hình sau đây không là khối đa diện?
Câu 26. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√2
a3√2
a3√2
2 .
Câu 27. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là √2 − 1, phần ảo là −
√
3 B Phần thực là √2, phần ảo là 1 −
√ 3
C Phần thực là 1 −
√
2, phần ảo là −
√
√
2 − 1, phần ảo là
√ 3
Câu 28. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 29. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
√
b2+ c2
√
a2+ b2+ c2 B. c
√
a2+ b2
√
a2+ b2+ c2 C. b
√
a2+ c2
√
a2+ b2+ c2 D. abc
√
b2+ c2
√
a2+ b2+ c2
Câu 30. Tìm giá trị nhỏ nhất của hàm số y= (x2
− 2x+ 3)2
− 7
Câu 31. Khối đa diện đều loại {3; 5} có số cạnh
Câu 32. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 33. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là
Câu 34. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Tăng lên n lần B Không thay đổi C Tăng lên (n − 1) lần D Giảm đi n lần.
Câu 35. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
Câu 36. Khối đa diện đều loại {3; 4} có số cạnh
Câu 37. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
Câu 38. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối lập phương B Khối tứ diện đều C Khối bát diện đều D Khối 12 mặt đều.
Câu 39. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e−2+ 1; m = 1 B M = e2− 2; m = e−2+ 2
C M = e−2
− 2; m= 1 D M = e−2+ 2; m = 1
Trang 4Câu 40. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A. 5
√
13
√
√
√ 2
Câu 41. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = R B. D = (1; +∞) C. D = (−∞; 1) D. D = R \ {1}
Câu 42. Tính giới hạn lim2n+ 1
3n+ 2
A. 2
1
3
2.
Câu 43. [1] Tập xác định của hàm số y= 2x−1là
A. D = R \ {0} B. D = R \ {1} C. D = (0; +∞) D. D = R
Câu 44 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A Thập nhị diện đều B Nhị thập diện đều C Tứ diện đều D Bát diện đều.
Câu 45. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
A. ln 2
1
Câu 46. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 47. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 48. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 log 2x
x3 B y0 = 1
2x3ln 10. C y
0 = 1 − 2 ln 2x
x3ln 10 . D y
0 = 1 − 4 ln 2x 2x3ln 10 .
Câu 49. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
a2+ b2 B. √ ab
2
√
a2+ b2 D. √ 1
a2+ b2
Câu 50. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
1
e3
Câu 51. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 18 lần B Tăng gấp 3 lần C Tăng gấp 9 lần D Tăng gấp 27 lần.
Câu 52. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 53. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 54. Bát diện đều thuộc loại
Câu 55. Giá trị của lim
x→1(2x2− 3x+ 1) là
Trang 5Câu 56. Cho
Z 2 1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 57. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
Câu 58. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 4 ln 2x
2x3ln 10 . B y
2x3ln 10. C y
0 = 1 − 2 log 2x
x3 D y0 = 1 − 2 ln 2x
x3ln 10 .
Câu 59. [1] Tính lim1 − 2n
3n+ 1 bằng?
A. 1
2
2
3.
Câu 60. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
a√3
a
3.
Câu 61. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 62. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 63. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 64. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −∞;1
2
!
2;+∞
!
2
!
2;+∞
!
Câu 65. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?
Câu 66. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 67. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
ln 10. C f
0 (0)= ln 10 D f0(0)= 10
Câu 68. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
A. 9
11
2 .
Câu 69. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2(e) là:
A. 1
8
1
8
9.
Câu 70. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x+3trên đoạn [0; 2] là
Trang 6Câu 71 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
dx = x + C, C là hằng số B.
Z 1
xdx= ln |x| + C, C là hằng số
C.
Z
xαdx= α + 1xα+1 + C, C là hằng số D.
Z 0dx = C, C là hằng số
Câu 72. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 73. Cho hàm số y= x3
− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 74. Cho
Z 1 0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
1
4.
Câu 75. Khối lập phương thuộc loại
Câu 76. [3] Cho hàm số f (x)= 4x
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 2017 B T = 2016 C T = 2016
2017. D T = 1008
Câu 77. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là 3, phần ảo là 4 B Phần thực là −3, phần ảo là 4.
C Phần thực là −3, phần ảo là −4 D Phần thực là 3, phần ảo là −4.
Câu 78. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 79. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
9 .
Câu 80. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√ 2
a3√ 3
a3√ 3
12 .
Câu 81. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4
2x+ 12 log2
2x log2 8
x
Câu 82. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 83. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 84. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Trang 7Câu 85. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
Câu 86. Khối đa diện đều loại {3; 5} có số mặt
Câu 87. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
2 .
Câu 88. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
Câu 89. Dãy số nào sau đây có giới hạn là 0?
A. −5
3
!n
e
!n
3
!n
3
!n
Câu 90. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 91. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A 8
√
√ 3
14√3
√ 3
Câu 92 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx B.
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0
C.
Z
( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx D.
Z
f(x)g(x)dx=Z f(x)dx
Z g(x)dx
Câu 93. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A −2 ≤ m ≤ −1 B −2 < m < −1 C (−∞; −2) ∪ (−1; +∞) D (−∞; −2]∪[−1; +∞) Câu 94. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Một khối chóp tam giác, một khối chóp ngữ giác.
B Một khối chóp tam giác, một khối chóp tứ giác.
C Hai khối chóp tam giác.
D Hai khối chóp tứ giác.
Câu 95. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 96. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Câu 97. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A a3
√
3√ 6
a3√5
a3√15
3 .
Trang 8Câu 98. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 99 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
B.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
C.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
D.
Z
[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 100. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 101. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
B Cả ba câu trên đều sai.
C F(x)= G(x) trên khoảng (a; b)
D G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
Câu 102. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
A. 1
√ 3
3
2.
Câu 103. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = 120.(1, 12)3
(1, 12)3− 1 triệu. B m = 100.(1, 01)3
3 triệu.
C m = 100.1, 03
(1, 01)3− 1 triệu.
Câu 104. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối bát diện đều B Khối tứ diện đều C Khối 12 mặt đều D Khối 20 mặt đều.
Câu 105. Cho hình chóp S ABC có dBAC = 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A. a
3√
3
2√
3√ 2
a3√ 3
24 .
Câu 106. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 107. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A. −∞;2
5
#
B. " 2
5;+∞
!
"
−2
3;+∞
!
3
#
Trang 9Câu 108. Tìm m để hàm số y= x4
− 2(m+ 1)x2
− 3 có 3 cực trị
Câu 109. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 110 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 111. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng 1
3; 1
! B Hàm số nghịch biến trên khoảng 1
3; 1
!
C Hàm số nghịch biến trên khoảng −∞;1
3
! D Hàm số nghịch biến trên khoảng (1;+∞)
Câu 112. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 113. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
A. 1
√
Câu 114. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
A Không có câu nào
sai
Câu 115. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 116. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3
2a3√ 3
a3
4a3√ 3
3 .
Câu 117 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A. a
α
aβ = aα B aαbα = (ab)α C aα+β = aα.aβ D aαβ = (aα
)β
Câu 118. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Trang 10Câu 119. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 120. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
A 8
√
√
√ 3
Câu 121. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?
Câu 122. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?
Câu 123. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1 thỏa mãn |z1− 2 − i| = 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1gần giá trị nào nhất?
Câu 124. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
2
a3
√ 6
a3
√ 6
a3
√ 6
18 .
Câu 125. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x)+ g(x)] = a + b B lim
x→ +∞
f(x) g(x) = a
b.
C lim
x→ +∞[ f (x)g(x)]= ab D lim
x→ +∞[ f (x) − g(x)]= a − b
Câu 126. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
a√2
a
2a
3 .
Câu 127. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3
a3√ 3
3√ 3
9 .
Câu 128. Tính lim
x→5
x2− 12x+ 35
25 − 5x
5.
Câu 129. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s) Tính quãng đường chất điểm đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 130. Khối đa diện đều loại {3; 4} có số mặt
HẾT