Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [3 c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2 x + 2cos2 x lần lượt là A 2 và 3 B √ 2[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos 2 x
lần lượt là
√
√
2 và 3 D 2 và 2
√ 2
Câu 2. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
6
a3√2
a3√6
a3√6
6 .
Câu 3. Cho
Z 2
1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 4 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A Tứ diện đều B Nhị thập diện đều C Thập nhị diện đều D Bát diện đều.
Câu 5 Trong các khẳng định sau, khẳng định nào sai?
A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
C F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
D Cả ba đáp án trên.
Câu 6. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
a3√ 2
3√
3√ 3
2 .
Câu 7. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3√ 6
a3√ 3
a3√ 2
16 .
Câu 8. Biểu thức nào sau đây không có nghĩa
A (−
√
√
Câu 9. Thể tích của khối lập phương có cạnh bằng a
√ 2
A 2a3
√
3√ 2
2
Câu 10. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Hai đường phân giác y= x và y = −x của các góc tọa độ
B Đường phân giác góc phần tư thứ nhất.
C Trục thực.
D Trục ảo.
Câu 11. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
A.
√
√
Câu 12. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 13. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Trang 2Câu 14. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
a
√ 6
√
√ 6
6 .
Câu 15. Tính lim 5
n+ 3
Câu 16. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 17. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 18. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
2.
Câu 19. [1] Giá trị của biểu thức log √31
10 bằng
A. 1
1
3.
Câu 20. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
A. 1
1
e3
Câu 21. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. 4a
3√
3
8a3√3
a3√3
8a3√3
9 .
Câu 22. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 23. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
A. 1
1
Câu 24 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 3, 03 triệu đồng B 2, 22 triệu đồng C 2, 25 triệu đồng D 2, 20 triệu đồng.
Câu 25 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
B Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
C Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
D Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
Trang 3Câu 26. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b) B lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b) D lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b)
Câu 27. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 28. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 29. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
Câu 30. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 31. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 32. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là
Câu 33. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng số mặt của khối chóp.
B Số cạnh của khối chóp bằng số mặt của khối chóp.
C Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 34. Khối lập phương thuộc loại
Câu 35. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1+ 2e
4 − 2e. B m= 1 − 2e
4e+ 2. C m=
1+ 2e 4e+ 2. D m=
1 − 2e
4 − 2e.
Câu 36. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 37. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3
a3√5
a3√15
5 .
Trang 4Câu 38. Tính lim
x→5
x2− 12x+ 35
25 − 5x
A −2
5.
Câu 39. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
a2+ b2 B. √ ab
2
√
a2+ b2 D. √ 1
a2+ b2
Câu 40. Tính lim n −1
n2+ 2
Câu 41. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 42. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
2a3√3
a3√3
3√ 3
Câu 43. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 44. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A.
√
3
2 e
π
√ 2
2 e
π
2e
π
Câu 45. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 46. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 47. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
a2+ b2 B. ab
2
√
a2+ b2 D. √ 1
a2+ b2
Câu 48. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
4 < m < 0 D m > −5
4.
Câu 49. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 50. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
A.
√
√ 3
Trang 5Câu 51. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√ 2
a3√ 2
a3√ 2
12 .
Câu 52. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 53. [1] Tập xác định của hàm số y= 2x−1là
A. D = (0; +∞) B. D = R C. D = R \ {1} D. D = R \ {0}
Câu 54. [4-1213d] Cho hai hàm số y = x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y = |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 55. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A Cả ba câu trên đều sai.
B G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
D F(x)= G(x) trên khoảng (a; b)
Câu 56. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 57 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
C Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
Câu 58. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 59. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 60. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦
Đường chéo
BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là
A. 4a
3√
6
2a3
√ 6
3√
3√ 6
3 .
Câu 61. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là
Câu 62. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 63. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 64. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Trang 6Câu 65. Giá trị cực đại của hàm số y = x3
− 3x+ 4 là
Câu 66. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
2.
Câu 67. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Câu 68. Dãy số nào sau đây có giới hạn khác 0?
A. sin n
1
n+ 1
1
√
n.
Câu 69. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 70. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 71. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 72. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 73. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 log 2x
x3 B y0 = 1 − 4 ln 2x
2x3ln 10 . C y
2x3ln 10. D y
0 = 1 − 2 ln 2x
x3ln 10 .
Câu 74. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 75. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
2; 3
!
"
2;5 2
!
Câu 76. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 77. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là 1 −
√
2, phần ảo là −
√
√
2 − 1, phần ảo là
√ 3
C Phần thực là
√
2, phần ảo là 1 −
√
√
2 − 1, phần ảo là −
√ 3
Câu 78. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 79. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
A. abc
√
b2+ c2
√
a2+ b2+ c2 B. a
√
b2+ c2
√
a2+ b2+ c2 C. c
√
a2+ b2
√
a2+ b2+ c2 D. b
√
a2+ c2
√
a2+ b2+ c2
Trang 7Câu 80. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = 4 +2
e. B T = e + 2
e. C T = e + 1 D T = e + 3
Câu 81. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 82. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối tứ diện đều B Khối 12 mặt đều C Khối lập phương D Khối bát diện đều.
Câu 83. Tính lim
x→2
x+ 2
x bằng?
Câu 84. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 4 mặt B 3 đỉnh, 3 cạnh, 3 mặt C 4 đỉnh, 6 cạnh, 4 mặt D 4 đỉnh, 8 cạnh, 4 mặt.
Câu 85. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
A. 2a
3
4a3
4a3√ 3
2a3√ 3
3 .
Câu 86. Khối đa diện đều loại {3; 4} có số mặt
Câu 87. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
3.
Câu 88. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Câu 89. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 90. Tính lim 2n
2− 1 3n6+ n4
A. 2
Câu 91. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. 4a
3√
3
2a3√ 3
a3
a3
6 .
Câu 92. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 93. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
√
3, 38 C 8, 16, 32 D 2, 4, 8.
Trang 8Câu 94. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
6
3√
3√ 5
a3
√ 15
3 .
Câu 95. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 96. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 3
3 . B V = πa3
√ 6
6 . C V = πa3
√ 3
6 . D V = πa3
√ 3
2 .
Câu 97. [1] Đạo hàm của làm số y = log x là
0 = 1
0 = 1
xln 10. D y
0 = ln 10
x .
Câu 98 Phát biểu nào sau đây là sai?
A lim un= c (Với un = c là hằng số) B lim qn= 1 với |q| > 1
C lim √1
nk = 0 với k > 1
Câu 99 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 100. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số đồng biến trên khoảng (1; 2) B Hàm số nghịch biến trên khoảng (−∞; 0).
C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số nghịch biến trên khoảng (0; 1).
Câu 101. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối 20 mặt đều B Khối bát diện đều C Khối 12 mặt đều D Khối tứ diện đều.
Câu 102. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 103. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 104. Khối đa diện đều loại {3; 3} có số mặt
Câu 105. [1] Tập xác định của hàm số y= log3(2x+ 1) là
2
!
2
!
2;+∞
!
2;+∞
!
Câu 106. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4
2x+ 12 log2
2x log2 8
x
Câu 107. Hàm số nào sau đây không có cực trị
A y = x +1
x. B y= x4− 2x+ 1 C y= x3− 3x D y= x −2
2x+ 1.
Trang 9Câu 108. Cho hàm số y= x3
− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 109. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e2− 2; m = e−2+ 2 B M = e−2− 2; m= 1
C M = e−2+ 1; m = 1 D M = e−2+ 2; m = 1
Câu 110. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 111 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
Z
dx = x + C, C là hằng số
C.
Z
1
xdx= ln |x| + C, C là hằng số D.
Z
xαdx= α + 1xα+1 + C, C là hằng số
Câu 112. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
Câu 113. Cho I =Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 114. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 115. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3√3
a3√3
a3√3
36 .
Câu 116. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0
A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A 6
√
√
√ 3
14√3
3 .
Câu 117. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 118. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
9 .
Câu 119. Dãy số nào có giới hạn bằng 0?
A un= n2− 4n B un = n3− 3n
n+ 1 . C un = 6
5
!n D un = −2
3
!n
Câu 120. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√3
a3√3
a3√2
12 .
Trang 10Câu 121. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
√
Câu 122. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
√
2
a
a
2a
3 .
Câu 123. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3√ 3
a3√ 3
a3
4 .
Câu 124. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2
)?
Câu 125. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
Câu 126. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
A. 1
1
Câu 127. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (−∞; 2) B Hàm số đồng biến trên khoảng (0; 2).
C Hàm số nghịch biến trên khoảng (0; 2) D Hàm số đồng biến trên khoảng (0;+∞)
Câu 128. Khối đa diện đều loại {3; 5} có số mặt
Câu 129. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 130. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 50, 7 triệu đồng B 3, 5 triệu đồng C 20, 128 triệu đồng D 70, 128 triệu đồng.
HẾT