Tài liệu Free pdf LATEX (Đề thi có 4 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hai hàm y = f (x), y = g(x) có đạo hàm trên R Phát[.]
Trang 1Tài liệu Free pdf LATEX
(Đề thi có 4 trang)
BÀI TẬP ÔN TẬP MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx
B Nếu
Z
f(x)dx=
Z
g(x)dx thì f (x) , g(x), ∀x ∈ R
C Nếu
Z
f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R
D Nếu
Z
f0(x)dx =
Z
g0(x)dx thì f (x) = g(x), ∀x ∈ R
Câu 2. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z
A P= 2i B P= −1+ i
√ 3
2 . C P= −1 − i
√ 3
2 . D P= 2
Câu 3. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A. 14
√
3
√
√ 3
3 .
Câu 4. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 5. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020 − 21−x)
Câu 6. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 7. Tứ diện đều thuộc loại
Câu 8. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
A −1
1
2.
Câu 9. Cho
Z 2
1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 10. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
Câu 11. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng
A. 1
1
1
2.
Câu 12. Khối chóp ngũ giác có số cạnh là
Câu 13. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey
Trang 2Câu 14. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
A. 2a
3√
3
4a3√3
4a3
2a3
3 .
Câu 15. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
√
Câu 16. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 4 đỉnh, 6 cạnh, 4 mặt B 6 đỉnh, 6 cạnh, 4 mặt C 3 đỉnh, 3 cạnh, 3 mặt D 4 đỉnh, 8 cạnh, 4 mặt.
Câu 17. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Câu 18. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối 12 mặt đều B Khối bát diện đều C Khối tứ diện đều D Khối lập phương.
Câu 19. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 20. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Câu 21. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|
A. 12
√
17
√
√
√ 5
Câu 22. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 23. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 24. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
A. 3
√ 3
1
Câu 25. Bát diện đều thuộc loại
Câu 26. Dãy số nào có giới hạn bằng 0?
A un= n3− 3n
n+ 1 . B un = −2
3
!n C un = n2− 4n D un = 6
5
!n
Câu 27. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −1
2;+∞
!
2;+∞
!
2
!
2
!
Câu 28. [1] Tập xác định của hàm số y= 2x−1là
A. D = R \ {1} B. D = R \ {0} C. D = (0; +∞) D. D = R
Trang 2/4 Mã đề 1
Trang 3Câu 29. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3√ 6
a3√ 3
a3√ 6
8 .
Câu 30. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞
f(x)
g(x) = a
C lim
x→ +∞[ f (x) − g(x)]= a − b D lim
x→ +∞[ f (x)g(x)]= ab
Câu 31. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 32. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = (−∞; 1) B. D = (1; +∞) C. D = R \ {1} D. D = R
Câu 33. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
3√ 3
a3
√ 3
a3
√ 2
2 .
Câu 34. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối tứ diện đều B Khối 12 mặt đều C Khối bát diện đều D Khối 20 mặt đều.
Câu 35 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
B Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
C Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
Câu 36. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 37. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
2
√
a2+ b2 C. √ 1
a2+ b2 D. ab
a2+ b2
Câu 38. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
27.
Câu 39. Cho f (x)= sin2x −cos2x − x Khi đó f0(x) bằng
Câu 40. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Hai khối chóp tam giác.
B Hai khối chóp tứ giác.
C Một khối chóp tam giác, một khối chóp tứ giác.
D Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 41. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 1
2x ln x. B y
0 = 2x ln 2 C y0 = 1
0 = 2x ln x
Trang 4Câu 42. [3-12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 43. Khối lập phương thuộc loại
Câu 44. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 45. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
Câu 46. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng
A. 1637
1728
1079
23
68.
Câu 47. Điểm cực đại của đồ thị hàm số y = 2x3
− 3x2− 2 là
Câu 48. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
A. 3
Câu 49. Cho hàm số y= x3+ 3x2
Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên khoảng (−2; 1).
B Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
C Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
D Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
Câu 50. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
A.
√
√
√
HẾT
-Trang 4/4 Mã đề 1
Trang 5ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1