1. Trang chủ
  2. » Tất cả

Đề ôn thi thpt môn toán 2 (661)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thi thpt môn toán 2 (661)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 5
Dung lượng 112,58 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 4 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Khối đa diện đều loại {3; 4} có số cạnh A 12 B 6 C 8 D 10 Câu 2 Trong các khẳng định sau, khẳng định nào sa[.]

Trang 1

Free LATEX

(Đề thi có 4 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Khối đa diện đều loại {3; 4} có số cạnh

Câu 2 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

B Cả ba đáp án trên.

C Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

D F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

Câu 3. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 4 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 B.

Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx

C.

Z

( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx D.

Z

f(x)g(x)dx=Z f(x)dx

Z g(x)dx

Câu 5. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 6. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

√ 2

Câu 7. [1] Tập xác định của hàm số y= 4x 2 +x−2là

A. D = R B. D = [2; 1] C. D = (−2; 1) D. D = R \ {1; 2}

Câu 8. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b Khoảng cách giữa hai đường thẳng

BB0và AC0bằng

2√a2+ b2 C. √ ab

a2+ b2 D. ab

a2+ b2

Câu 9. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

A. 5

7

Câu 10. [1] Biết log6 √a= 2 thì log6abằng

Câu 11. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. 5a

3√

3

2a3√ 3

a3√ 3

4a3√ 3

3 .

Câu 12. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Trang 2

Câu 13. Khối đa diện đều loại {3; 4} có số mặt

Câu 14. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

-2

3.

Câu 15. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 6 đỉnh, 6 cạnh, 6 mặt D 5 đỉnh, 9 cạnh, 6 mặt.

Câu 16. Tính limcos n+ sin n

n2+ 1

Câu 17. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 18. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 120.(1, 12)3

(1, 12)3− 1 triệu. B m = (1, 01)3

(1, 01)3− 1 triệu.

C m = 100.(1, 01)3

3 triệu.

Câu 19. Tính lim

x→1

x3− 1

x −1

Câu 20. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 21. Tứ diện đều thuộc loại

Câu 22. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. a

57

2a√57

a√57

√ 57

Câu 23. Tính lim

x→3

x2− 9

x −3

Câu 24. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



A [0;+∞) B (−∞; 0] ∪ (1;+∞) C (−∞; −1) ∪ (1; +∞) D (1; +∞).

Câu 25. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Trang 2/4 Mã đề 1

Trang 3

Câu 26. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 20, 128 triệu đồng B 3, 5 triệu đồng C 70, 128 triệu đồng D 50, 7 triệu đồng.

Câu 27. Khối chóp ngũ giác có số cạnh là

Câu 28. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

A 3 − 4

Câu 29. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 30. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ [a; b], ta có F0(x)= f (x)

B Với mọi x ∈ (a; b), ta có f0(x)= F(x)

C Với mọi x ∈ [a; b], ta có F0(x)= f (x)

D Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

Câu 31. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

2

a3√ 3

a3√ 3

a3√ 3

6 .

Câu 32. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A. 13

5

9

23

100.

Câu 33. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A. 2a

3

a√3

√ 3

3 .

Câu 34. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

3

9

4.

Câu 35. Tính lim

x→ +∞

x −2

x+ 3

A −2

Câu 36. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

A. 14

3

√ 3

3 .

Câu 37. Khối đa diện đều loại {3; 5} có số cạnh

Câu 38. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Trang 4

Câu 39. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x)g(x)]= ab B lim

x→ +∞

f(x) g(x) = a

b.

C lim

x→ +∞[ f (x)+ g(x)] = a + b D lim

x→ +∞[ f (x) − g(x)]= a − b

Câu 40. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A a3

3√ 15

a3√ 6

a3√ 5

3 .

HẾT

-Trang 4/4 Mã đề 1

Trang 5

ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1

Ngày đăng: 26/03/2023, 22:21