Pneumatic lectures
Trang 1ABSTRACT
Hydraulic systems include various non-linearities in
static and dynamic characteristics of their components.
Consequently, a variety of nonlinear phenomena occur
in the systems This paper deals with intrinsic
nonlinear dynamic behaviors of hydraulic systems.
KEYWORDS
Hydraulics, Nonlinear phenomena, Hard
self-excitation, Micro-stick-slip, Chaos
INTRODUCTION
Hydraulic systems consist of various elements: pumps,
actuators, control valves, accumulators, restrictors,
pipelines and the like, which include many types of
nonlinearity, such as pressure-flow characteristics in
control valves, dry friction acting on actuators and
moving parts of valves, collision of valves against
valve seats As a result, various types of nonlinear
phenomena arise caused by these non-linearities It is a
marked feature of nonlinear systems that global
behaviors are sometimes quite different from local
behaviors In such cases, results of linear analysis are
unavailable to estimate global nature of the system.
This paper focuses on the nonlinear phenomena
occurring in hydraulic systems, especially, “hard
self-excitation” [8] whose global stability drastically
changes from local one on the basis of the author’s
studies in the past [1]-[7].
HARD SELF-EXCITATION IN
ASYMMET-RICALLY UNDER-LAPPED SPOOL VALVE
[1],[2]
Spool valves are classified into three types, over-lap
valves, zero-lap valves and under-lap valves on the
basis of the relation of the land-width to the port-width.
They are used properly according to their applications.
Usually in spool valves, the supply side lap is equated
to the exhaust side lap, but the lap of the exhaust side is
often taken smaller than that of the supply side by error
in measurement in working or for stability purpose.
This type of spool valve is called ”asymmetrically
under-lapped spool valve” Abnormal oscillations
so-called “hard self-excitation” are excited in hydraulic
servo-systems using this type of spool valve shown in
demonstrated in Fig 2, which shows the relation
between soft self-excitation and hard self-excitation by bifurcation maps of amplitude and phase plane trajectories of oscillations, where λ is a related system
Fig 1 Servo-system using metrically lapped spool valve
asym-Fig 2 Types of self-excitation, bifurcation maps and phase trajectories
Trang 2λ(= εe/εs = 0.047 (εs=0.75mm) and the supply pressure
is Ps = 9.5MPa As shown here, the transient
oscillatory responses (a), (b) and (c) settle down to an
initial equilibrium position for relatively small inputs.
This shows the neutral position is locally stable.
However, the response (d) for larger inputs beyond a
critical valve develops into a finite amplitude
oscillation This fact shows that the phenomenon is a
typical “hard self-excitation”[1].
Fig 4 indicates a local stability map of the neutral
position of the system, which is calculated from the
following stability criterion Eq (1) [2].
0 2
0
2 A aMA V B
b M b B
and A is the cross-sectional area of the actuator, B the
damping coefficient, Cx the leakage coefficient, M the
load mass, Q the flow rate of the valve and κ the bulk
modulus of oil.
The curve in Fig 4 shows the critical supply
pressure against asymmetry ratio Λ(=1−λ) According
to the map, the system using a symmetrical lapped
valve λ=1 (εs= εe) is locally stable for the supply
pressure Ps =5.9MPa But for the system using a spool valve with asymmetry lap ratio λ=0.047, the neutral position is stable.
Equivalent asymmetry ratio (Λ=1−λ) is gradually increases according to the increase of the spool amplitude after the valve begins to move by input disturbances, even though the system is stable at the
neutral position The pressure-flow coefficient b in Eq.
(1) drastically increases as shown in Fig 5 On the
other hand, the flow-gain a changes little As a result,
the system becomes unstable and the oscillation is excited This is the mechanism of the “hard self- excitation” Taking into consideration this hard self- excitation, the self-excited region is enlarged more than locally unstable region that is between a solid line and a dashed line as shown in Fig 6.
Fig 3 Responses of hydraulic
servo-system with asymmetrical spool valve for
different magnitude of step inputs
, 2 1 0 , 2
0 2 0 1
, 0 where
V V V d C e C b b
P
Q P
Q b x
Q a
=
= +
, P P P P
Trang 3This paper dealt with the new developments of
pneumatics in the following areas:
• Pneumatic components
• Industry segment specialized applications
• Best before-sales and after-sales services
Servo control, Field-bus, valve terminal, modular
systems, dynamic simulation, database
INTRODUCTION
Pneumatics were first utilised at the beginning of the
fifties Fig 1 shows a device built in 1955, which was
fitted with single-acting aluminium die cast cylinders A
typical pneumatic system of that time was used in this
device; it consisted of cylinders and manually operated
valves An operator played the roll of a “logic controller”.
Fig 1 An early pneumatic system
Fig 2 A purely pneumatic sequence controller with 12
inputs and 12 outputs
Over the past 50 years, with the rapid developments in science and technologies, especially in automation, mechanical, electronic and computer technologies, pneumatics has been experiencing a quick expansion and development Take automation sequence controllers as an example, the first pneumatic control systems functioned via valves that were actuated by driven camshafts In the seventies many purely pneumatically actuated sequence controllers such as the QUICKSTEPPER (Fig 2), which consisted of several pneumatic logic elements, were used
in applications.
How is pneumatics applied in today’s modern world? I would like to focus on the new developments in pneumatics in the following areas:
• Pneumatic components
• Industry segment specialized applications
• Best before and after-sales services
NEW DEVELOPMENTS IN PNEUMATIC COMPONENTS
o The combination of different techniques The combining of pneumatics with electronics and of pneumatics with mechanics became an obvious trend over the last 10 years.
Behind this trend is the fact that more and more pneumatic drives, sensors and valves are used in a modern automatic machine This means more inputs and outputs are required in the control system A purely pneumatic
Trang 4demands to improve the performance and to expand the
functions of pneumatic components A pneumatic valve
should be easy to install and fast switching A pneumatic
drive should be able to move faster and more precisely.
Sometimes an electro-pneumatic proportional valve is
required to convert a continuous electronic signal into
pneumatic signal.
All this resulted in the combination of pneumatics,
electronics and mechanics.
By combining pneumatics with mechanics, customers will
not only save engineering time with regard to designing
and testing, but also receive an optimised solution because
the product they receive is proven and tested by the
pneumatics manufacturer.
Fig 3 shows a swivelling/linear unit, in which a linear
cylinder is combined with a rotary drive to get
independent linear and rotational movements.
Fig 3 A swivelling/linear unit
Fig 4 shows pneumatic units used in an assembling
system This includes a linear and rotary cylinder
combined with a high precision guide unit Excellent
precision and rigidity can be achieved with this
combination of components.
The “valve terminal” concept was introduced at the
beginning of the nineties In recent years valve terminals
have been widely used The origin of such a product is to
meet the demands of the larger scale control system In a
valve terminal, the valves and electronic I/Os are
integrated in accordance with specific user interfaces (Fig.
5) Customers can order a valve terminal according to the
specification of their application They will get a complete
Fig 5 A valve terminal, the combination of pneumatics
and electronics
A valve terminal equipped with fieldbus connection makes it possible for the pneumatic system to be integrated as a part of a factory network.
Trang 5Fig 7 is a multi controlled positioning system, a
pneumatic servo-positioning axis is combined with an
electrically driven axis In this system, we can see that
both the guided pneumatic linear cylinder DGPL and the
guided electrical axis DGEL have the same mechanical
interfaces This makes it much easier for customers to
design their machines.
Fig 6 Cylinder, solenoid valve, speed control valves
and sensors in an integrated unit
Fig.7 Pneumatic and electrical drives with the same
mechanical interface
o Compact performance
In many applications, a pneumatic control valve is to be
mounted together with some moving parts of the machine.
In this case, the valve should be as light and as small as
possible On the other hand, in order to shorten machine
the same flow rate (400 l/min) but the new generation of solenoid valve is only 10 mm in width, while the old type
is 40 mm.
Fig.8 In comparison, valves of 1961 and 1997, the same flow rate, but a quarter of the width
o More intelligence is integrated into products.
Faster movement is often desired on a machine It is not difficult to get a cylinder to move faster But it is more difficult to stop a fast moving cylinder properly (without vibrations or shocks).
Fig 9 shows a soft-stop cylinder, in which a displacement sensor, a 5/3 dynamic proportional valve and a smart controller are included With such a system, the time taken for the cylinder to travel from one end position to the other can be reduced by 30% In addition, 2 freely selectable intermediate position settings are possible.
Fig.9 Fast speed and soft stop
Trang 6Fig.10 Smart pneumatic positioning axes
The controller is robust and suitable for industrial
applications Built-in intelligence enables it to find the
optimised control parameters The user needs only to
input the essential application data, such as the load,
stroke, diameter and so on Or even more simply, in the
case of the SPC11 controller, just to push a “teach-in”
button.
o Cutting costs with the modular product concept
In a modern highly automated machine, the control
system often has many functions One solution is to make
such products, in which all the necessary functions are
integrated, but this may incur high manufacturing costs.
Fig 11 A modular valve terminal with 26 solenoid
valves and various electronic interfaces
A modular valve terminal is shown in Fig 11 Customers can configure or select the number and the size of the valves, the quantity of the electronic I/Os and so on.
Fig 12 and Fig 13 show modular vacuum components and modular air service unit respectively.
Fig.12 A modular vacuum system with freely
combinable suction cup holder, angle compensator, filter and suction cup
o Innovation, the new driving principle
A new single-acting pneumatic drive - fluidic muscle - is shown in Fig 14 It can output 10 times more force than a standard cylinder of equivalent diameter Fig 14 shows some applications of such a drive.
Trang 7Fig 13 A modular air service unit with manual on-off
valve, compressed air filter and regulator,
lubricator, soft-start valve, distributor and
pressure switch
Fig 14 Fluidic muscle and some typical applications
It is well known that with a pneumatic cylinder it is very
difficult to achieve slow movement without the stick-slip
effect To overcome this disadvantage electrically driven
cylinders of the same size and with the same installation
interfaces as standard pneumatic cylinders have been
TRENDS REGARDING APPLICATIONS
With regard to pneumatic applications, one of the most important tasks today is to develop more and more specialized products for the various industry segments.
Fig 15 Pneumatic components for the food and packing
industry
Fig 15 shows cylinders and valves that have been specially developed for the food and packaging industry, where high corrosion resistance and ease of cleaning are essential.
The electronics and handling and assembly industry also need pneumatic products that can meet special requirements Fig 4 shows some precisely guided pneumatic drives with very high rigidity that are suitable for use in the handling and assembling industry Fig 16 shows some miniature precisely guided pneumatic actuators that suit the applications in the electronics industry.
Trang 8It is not enough nowadays just to offer customers a good
pneumatic product Customers need more and more help
with their everyday tasks This is because they get less
and less time for designing, establishing and maintaining
their machines.
A very efficient way is to help the customer by providing
new software tools.
An electronic catalogue using the database principle
makes it possible to access product information and
drawings quickly and easily, via function searching,
image searching and other searching methods (Fig 17).
Fig 18 shows a software tool ProPneu, which differs
from a normal dynamic simulation software tool ProPneu
can not only check an existing pneumatic system via
dynamic simulation but also automatically select the
components according to the performances required by
the customer The customer needs only provide Propneu
with a limited amount of information concerning an
application.
The settings and parameters of the components, such as
the setting of the pneumatic cushioning and the flow
control valves, can be automatically optimised by
Propneu, according to the criteria the user has selected.
Propneu can also recommend the appropriate pneumatic
components for a given task, e.g to move a defined load
in a required time and a certain distance vertically,
horizontally or any inclined installation.
Fig 19 shows the software FluidDraw that assists
customers in creating pneumatic circuits on a CAD
system If customers need to know whether their circuit
sequences are correct, then FluidSim is the right
simulation tool.
Fig 17 Fast product accessing via the electronic catalogue
Fig 18 ProPneu, an intelligent software for the selecting,
simulating and optimising of a pneumatic system
Trang 9Fig 19 Software for designing and simulating circuits
for pneumatic sequences
Fig 20 3D CAD drawings on a Website
More and more engineers use a CAD system for
machine design, so, it is very helpful for them to get 2D
or 3D CAD drawings of the pneumatic components they
have selected As shown in Fig 20, they can now easily
import a 2D or 3D CAD drawing via the Internet.
[2] Stoll, Kurt, What is Pneumatics? Thesis, University
of Stuttgart, 1958
[3] Pneumatic Tips, No 51/1994, Festo Pneumatic, Esslingen
[4] Pneumatic World, 2000, No 1, 2
[5] Werner Deppert, Kurt Stoll, Cutting Costs with Pneumatics, 1988, ISBN 7-111-07456-4, in 14 Languages (including Chinese)
[6] Stefan Hesse, 99 Examples of Pneumatic Applications, 2000
[7] Hong Zhou, A Smart Pneumatic Servo Positioning Axis and Its Applications, 3rd JHPS, Proceedings of the Third JHPS International Symposium on Fluid Power, Yokohama, 1996
Trang 10Xi’an Jiaotong University, 710049, Xi’an, P.R China
sawang@xjtu.edu.cn
ABSTRACT
As the precise model of most practical mechatronics
system cannot be obtained, the practice of typical
control method is limited Accordingly, numerous AI
(Artificial Intelligence) control methods have been used
widely Fuzzy control and Neural Network control have
been an important point in the developing process of the
field However, shortcomings exist in each of these
methods For example, the fuzzy control is unable to
learn, and the physical meanings of learning result of
the Neural Network control are not clear Combining the
strong points of above two methods, a new control
method of FNN (Fuzzy Neural Networks) is explored in
this paper Additionally, a problem concerning the
traditional network learning is discussed and a solution
to such a problem is obtained subsequently The new
control strategy does not depend on the classical model
and the algorithm is simple The results of the
experiments applying the new strategies are discussed.
Through different researches on control system, which
model is unacquainted, the reasonableness, effectiveness
and applying universality of the new control strategies is
proved.
INTRODUCTION
The mechatronics system becomes more and more
complicated According to the Incompatibility Principle
[1], the higher complicacy of the system is, the lower
ability to describe becomes So the typical control
methods based on the precise model cannot meet the
need AI offers new strategies for the mechatronics
control system.
Since the AI Project was launched at MIT in 1957, it
has achieved great success in many fields It attracts
more and more attention to AI and many AI methods
have been put forward [2] Fuzzy and NN (Neural
Networks) are important aspects in AI, simulating
different functions of the human brain The former
simulates the macroscopical functions, such as
syllogisms, but the latter simulates the associatron,
classification, memory by way of imitating the
microcosmic structure But the Fuzzy cannot learn and
the NN cannot deduce In addition, the Fuzzy can be
understood and the learning results of the NN cannot
[3] The new AI method, FNN , which integrated the good qualities of the two methods, has been the hotspot
in AI fields.
Firstly, this paper will discuss a new object function of FNN learning and a problem in NN control system Then a new FNN control structure will be put forward based on them Finally, some conclusions will be acquired, supported by related experiments.
THE OBJECT FUNCTION
Object function is very important for the control system.
∫e2
dt is usually taken as the Object function in time fields The smaller the area, like figure 1, which surrounded by the phase track in the phase space is, the better performance of the system is So the integrated object function can be defined as
de e dt e
(1) where e is the error between the sysytem’s real output
and the reference input e& is the differential coefficient
de de dt
de de
(2) ∫ e&de = ∫ e&2dt
(3) The area surounded by the phase track is the integration
of the error’s differential coefficient So the error and its differential coefficient are synthetically considered in the new object.
Trang 11Fig 2 The typical structure of NN
Where y is the real output, r is the reference input,
u is the NN’s output, and e is the system error The
object of the control is made y=r, namely e becomes 0.
The learning method adopted is usually Gradient
Search Obviously, the error is the main parameter in
this method.
In theory, the error which is needed by the NN
learning is e’, defined as
o
u u
e = − (4) Where uo is the NN’s desired output uo can be
obtained:
) (1
r f
uo = − (5)
So the general object function can be defined as:
2 1)) ( ( u f r
Je∗= − −(6)
Then
w
r f r f u w
1 1
(7)
Because the precise model of the system can not be
obtained, even though the precise model is obtained,
most practical mechatonics system is very complex.
Therefore, the equations cannot be solved So uo is not
known Practically, y usually is used to replace uo, as a
result, the object function is defined as
2) ( r y
Je = − (8)
So
w
y y r w
Generally the following equation is not true.
w
r f r f u w
y y r
1 1
(10)
In fact, the signs are different from each other between
these at the two sides of the “=” So the NN can not
approach the desired value, even the NN’s astringency
of FNN can be put forward It looks like figure 3 Where the network NN1 is FNN network and NN2 is the RBF network W is the weight of NN1 and W’ is the weight of NN2 NN1 is employed to obtain the control output u NN2 is just as the system’s inverse model, it is used to acquire the uo, u’s desired output.
System f(u) u
e
e&
+ _
W
a
W' a'
NN1
NN2
the learning algorithm
u1 + _ adjust
adjust
e
e&
eu
Fig 3 The structure of the new FNN
There are lots of types of FNN, but generally they can
be classified two kinds One is the NN which directly is constructed by the Fuzzy’s rule,another is the NN which
is fuzzied from the unfuzzy NN.
In this paper, The FNN has two layers Its topical structure is achieved by the Fuzzy, and the fuzzy learning ability becomes strong by taking advantage of
NN The number of NN’s hidden layer’s nodes is just the same with that of the fuzzy’s section and the accept function of the nodes is corresponding to the membership function of the Fuzzy section.
So define the object function again:
∫ +
∫ +
The new algorithm’s detail process is the following:
(1) Partition the fuzzy section according to e and e&
(2) Initial the network (3) Calculate T
W
u = α * where α = ( a1£¬a2£¬ am) is the accept function m is the number of the nodes
(4) Modify the weight W and W’
For the j th node, because:
dt e grad dt
e grad J
grad
j j
dt e grad ∫
∗
Trang 12W f r u f r y
r
T T
e = 1 − = ' α ' − α
T j T T
j
u
W W w
e
αα
α α
' (
j
u
W W w
e
' '
' ) '
' ( '
2
α α
α α
u f u f r w
α α
α
T j
u
u f u f
u u
y y r w
y y
) ( ) 1 ( ) (
k u k u
k y k y u
u
f
− +
− +
≅
∂
∂
t k u k u
k y k y k
y u
y
∆
∗
− +
− +
∗
− +
) 1 ( ) ( 2 ) 1 (
&
y r t
y r t
y t
k r k
r
t
− +
−
∆
− +
lim
0 0
t
∆ is the interval of sample time
)) ( 1 )
)
1
(
] ) ( ) 1 ( ) ( )
1
(
) ( )
1
(
* ) (
u
t
k y k y
k
y
t
k y k
y t
k r
k
r
k y k r k u k
u
k y k
y
k w
process for the NN1, and the damp of the system is increase, which is useful for the stability of the system This point is proved in the experiments.
(5) If J supplies the demand, then stop, else go to (3).
s s
2
10
* 1
1
* 975 4
* 975 4
* 041 0 2
975 4 )
+ +
+
= Its step response likes figure 4 The result that is used the new FNN control is also shown as figure 4.
Fig 4 The result of the physical emulational experiment
The result is obtained after six times learning Apparently it is better than that of PID and BP (The result of PID and BP is not given) It is found in the experiment that δ and β are very important for the result Motor is the typical mechatronics system, but its precise mathematics model cannot be obtained Regulating the motor’s speed is the normal work in the practice, and a lot of methods in such an aspect have been brought forward [4][5][6] Figure 5 is the result of the experiment about regulating the motor’s speed.
Trang 13Fig 5 The result of the experiment about motor
Fig 6 The result of the PID control
The result of the new FNN is obtained after three times
learning Comparing the results of the experiments, the
strengths of the new FNN are outstanding In addition,
PID’s parameter is confirmed hardly The PID
optimized result shown in Fig.6, which is caused by
regulating again and again According to the
experiments, the availability of the new FNN proposed
above is proved.
SUMMARY AND OUTLOOK
At first, a new object function based on the phase space
is defined, then a problem about NN’s learning is
discussed and a new FNN control Strategies is
proposed, at last two related experiments are practised.
Through the experiments, some results can be obtained:
(1) The new FNN is available.
(2) The new FNN does not need the precise
mathematics model of the system.
(3) The new object function is valid.
(4) The new FNN is good for overcoming the problem
in NN control.
It is very easy for the control rules to be mined from the
New FNN There are some papers concerning this point
[7][8].
[1] Sugeno M, K Tanaka, A fuzzy-logic-based approach to qualitative modeling IEEE Trans on Fuzzy Systems, 1993, 1(1): 7-13.
[2] Daniel G.Bobrow, J.Michael Brady, Artificial Intelligence 40 years later, Artificial Intelligence, 1998, (103) 1∼4.
[3] Li Shaoyuan, Xi Yugeng, Chen Zengqiang, Yuan Zhuzhi, The new progresses in Intelligent Control (I), Control and Decision, 2000, 15(1): 1-5, (in Chinese) [4] N.C Sahoo, S.K Panda, P.K Dash, A current modulation scheme for direct torquecontrol of switched reluctance motor using fuzzy logic, Mechatronics ,
2000, 10 353 370.
[5] Ma Hongtao, Wei Zeding, Zhai Cheng, The new control system for alternating voltage adjusting and practice, Journal of Hebei Academy of Sciences, 1997 (1): 12-14, (in Chinese).
[6] Xiang Jun, Li Shiwne, A PLL Motor-Speed control system, Journal of South-West Jiaotong University,
1998, 33(6): 705-709, (in Chinese).
[7] Chen Ming, Wang Jing, Shen Li, Research on Automatic Fuzzy Rule Acquisition Based on Genetic Algorithms, Journal of Software, 2000,11(1): 85-90 (in Chinese).
[8] Hou Yuanhui, Lu Yuchang, Shi Chunyi, Using phase approach to extract knowledge from artificial neural network, Journal of Qinhua University, 1998, 38(9): 96-99, (in Chinese).
Trang 14two-State Key Laboratory of Fluid Power, Zhejiang University, Hangzhou, Zhejiang, 310027,P.R.China
Xwkong@sfp.zju.edu.cn
ABSTRACT
The accurate mathematical model of valve control
hydraulic system with long pipeline is constructed
through theoretical analysis The influences of long
pipeline on valve control hydraulic system are
investigated A series of conclusions were obtained,
which are important to the design and analysis of valve
control hydraulic system.
INTRODUCTION
Large-sized construction machinery usually has tens of
actuators All of them get power from a central
hydraulic source Some are far away from the hydraulic
source The long pipeline between actuator and
hydraulic source is essential sometimes It causes many
problems to electro-hydraulic system This paper studies
the influences of long pipeline on valve control system
and comes to some simply and valuable conclusions.
TRANSFER FUNCTION OF VALVE
CONTROL SYSTEM
In order to analyze the characteristics of valve control
system with long pipeline, The transfer function of
valve control system must be established Fig.1 shows
the principle of valve control system with long pipeline
Fig.1 The principle of valve control system
(1) Pipe Dynamic Characteristics
Equation[2][4]
Γ+
Γ
=
Γ+
Γ
=
)()()(
1)())
(
)()()()()()
(
2 2
1
2 2
1
s sh s P s Z s ch s Q s
Q
s sh s Q s Z s ch s P s
P
C C
Assume that the hydraulic source supply constant
pressure oil, the return pressure is zero and the length of
in-line and return line is equal, then we obtain
0)))())
(
0)()()()()
(
0
=Γ+
Γ
s sh s Q s Z s ch
s
P
s sh s Q s Z s ch
s
P
v C v
sv C
)2()1(
where Γ (s ) —propagation operator
Zc(s ) characteristic impedance
(2) Four-way Slide valve Dynamic Equation
If orifice area of slide valve is matching and symmetric, then the flow-pressure equation is
ρ ρ
v f sv d v f sv d L
P P P A C P P P A C
v f sv d v f sv d v sv
P P P A C P P P A C Q
2 0 1
0
−++
=
W
A X W
A X X W A A
V
V V
10
10 10
1
,0,
A X X W A A
V
V V
20
20 20
2
,0,
C is the flow coefficient The Laplace transforms of
Eq (3) and Eq (4) are as follows
)6()()()()()(
)5())
()()()
0 0 0 0
s P K s P K s P K s X K s Q
s P K s P K s P K s X K s Q
v S sv SS f CS v QS sv
v sv
S f C v Q L
++
−
=
++
−
=
Trang 15|
|(
20 10
P P P W
C
v f sv d
−+
)(
2
20 10
20 10
0 20 10
0 20 0
10
A A
A A
P P P A A C
P P P
A P
P P
A C
v f sv d
v f sv v f sv
|
|2
00,
|
|2
0,
)(
2
10 20 0
20
20 10 0
10
20 10 0
20 0
10
A A P
P P A C
A A P
P P A C
A A P P P
A P
v f sv d
v f sv v f
|
|
00
|
|
0)
(
10 20 0
20 10 0
20 10 0 0
A A P
P P W
C
A A P
P P W
C
A A P P P P P
v f sv d
v f sv v f
,
C S S C S
S
P
Q K K P
,
(3) The Continuity Equation and Force
Balance Equation of Cylinder
)8()(
)7()(
4
2 2
Equation Balance
Force
F X K dt
dX B dt X d m
P
A
Equation Continuity
P C dt
dP E
V dt
dX A
Q
L t t t t t t f
t
f sl f
y t t t
L
+++
=
⋅+
⋅+
=
where At and Xt are the area and motion of hydraulic
cylinder piston respectively, EY is the equivalent
volume elastic modulus, Vt is the general volume of
hydraulic cylinder, Csl is the general leakage
coefficient Eqs (1), (2), (5), (6) together with the
Laplace transforms of Eq (7) and Eq (8) composed a
set equations, from which we can obtain the transfer
function of system as follows
2 1
h h C h
ω
where
))(())(()(
1
s ch s sh Z s
t y h
V m
t y t
sl C h
m E
V A
B V
m E A
C K
4
) (
+ +
=
ξ
t
t y C t
CS h h
V
m E K A
K2 ' = ξ −
ξ
t
Q v
A
K K K K
=
THEORETICAL ANALYSIS OF THE INFLUENCES OF PIPE ON VALVE CONTROL HYDRAULIC SYSTEM
When the influence of pipe is neglected
s
sv P
P = =constant P0v= P0= 0 G1( s ) =0 The transfer function of system is
12)
(
2 2 '
++
=
=
•
s s
K X
X s G
h h h
v v
t
ω
ξ ω
The influences of pipe on system can be measured by the difference between G (s ) and '( )
||
)(
'
ω ω ω
ω
j G
j G j
G
and
|))(())((
|)
| ) 2
( 2 ) ( ω K G1 j ω
K
K K
Trang 16characteristics of system The actual value of Kc and
cs
K aren’t zero but very small So, the influence of pipe
to system is minimal under the condition
It will be seen that if KC is small enough, the influences
of pipe on system can be neglected According to the
theory of fluid transmission lines, | G1( j ω ) | reaches
maximal point at resonance frequency and fluctuates
periodically as frequency ascends Accordingly, G ( j ω )
fluctuates periodically relating to G'( j ω ) The
fluctuation frequency is proportional to the length of
pipe The fluctuation amplitude descends as frequency
ascends.
SIMULATION STUDY
It will be seen that the influences of pipe on hydraulic
system are related to the steady-state point of slide
valve Slide valve is in zero position in position
control system and in nonzero position in velocity
control system The following is the simulation study
of them.
(1) Position Control System
The simulation parameters are as follows:
Fig.2 presents the frequency response characteristics of
valve control hydraulic system under different pipe
the fluctuation amplitude reaches maximum near the natural frequency of system and is smaller in low- frequency and high-frequency stage
The frequency response is generally approximate to second-order system.
Fig.2 The frequency response characteristic of system
when slide valve is in zero Position
Fig.3 The frequency response characteristic of system
when slide valve is in nonzero position
-180 -160 -140 -120 -100 -80 -60 -40 -20 0 Phase-frequency characteristics
Trang 1710 2
Fig.3 presents the frequency response characteristics of
valve control hydraulic system under different pipe
length.
The simulation result shows:
the frequency response of system fluctuates
If the length of pipe or the value of KC isn’t small
enough, the system can’t be considered as
second-orde system.
CONCLUSION
This paper has presented an accurate mathematical
model for valve control hydraulic system with long
pipeline On the basis of the analysis to it, some
conclusions are reached.
1 The influences of pipe on system can be measured
approximately with the frequency domain criterion
| ) (
| ) 2
( 2
)
( ω K G1 j ω
K
K K
2 For given pipe parameters, Kc decides the influences
of pipe on system in terms of ideal zero lap slide
valve.
3 Pipe makes the frequency response of system
fluctuating periodically The fluctuation frequency is
proportional to the length of pipe The fluctuation
amplitude is decided by valve coefficient, pipe elastic
modulo and pipe inner diameter.
4 The influences of pipe are greater to velocity control
system than to position control system.
[8] Chen, Jine, “Theoretic solution of the transient flow
of liquid in the pipe with fluid Machinery”, Journal
of Hydrodynamics, v 4 n 4 Oct 1992 p 119-126
Trang 18Institute of Mechatronic Control Engineering, Zhejiang University, and Hangzhou 310027 P.R.China
ABSTRACT
The flow-pressure relationship is an important external
characteristic of the pilot operated pressure relief valve.
Many research efforts have been put on this topic for its
significant impact on the overall hydraulic system.
Some of the researches focused on the influences of the
hydraulic bridge to the main stage, while the others
attempted to analyze the influence of difference pressure
measurement (direct or indirect) of the system pressure
using control theories In this project, a novel method
has been adopted The basic idea is to find out the
correlation between the pilot flow and the overflow of
the main valve, and use this relative function as a
criterion to compensate for the force bore on the valve
poppet The flow-pressure curve of the relief valve can
be bent upwards(under-compensated), flat, or
downwards(over- compensated) The above scheme has
been utilized in the manufacture’s product catalogs.
Key words: variable hydraulic resistance, force
compensating, relief valve, controllability
INTRODUCTION
In pilot operated pressure relief valve, the main valve is
actually controlled by the pilot hydraulic bridge On the
other hand, the pilot hydraulic circuit and the main
valve port hydraulic circuit form parallel hydraulic
network The current researches show that the
steady-state override pressure is related to the control pattern of
the pilot valve and varied with where the pressure
exerting on the pilot valve and where the pressure sign
coming from[1] This paper intends to find the
correlationship between the pilot flow and the main
overflow of the relief valve, and to control the
flow-pressure characteristic of the pilot operated flow-pressure
relief valve by compensating for the force bore on the
pilot poppet according to the correlationship.
THE CORRELATIONSHIP BETWEEN THE
PILOT FLOW AND THE MAIN
OVERFLOW OF THE RELIEF VALVE
Fig.1 shows the structure and the principle of the relief
valve with compensating for the force bore on the pilot
poppet And the flow equations and force equilibrium
equations under steady-state are described below.
Fig 1 The structure and principle of the relief valve with
compensating for force bore on the pilot poppet
Where c1= µ a1 11 ρ 2 , c3= µ a3 13 ρ 2 ; µ1, µ3are the flow coefficient of orifice r1 and r3 respectively,
ρ is fluid mass density, a11 and a13 are the cross-area
Trang 19state point(q20 qx0 x0 y0) the increments equations
20
q
y b y
q b k p A p
2001221
q
q a y b k x c
2023022202
m qx A qx b x b x
3021002012
0
2= 2 − 2 + (15)
m q a k y c k y b22
20223023
The first part (m4) in right hand of formula (14) can be
omitted when compared with the others, so do the last
two parts in equations (15) and (16).Therefore, formula
(13) can be rewritten as follows:
Fig.2 The emulation curve of pilot flow varying with
the changing of the main overflow
a c A A c a A q
q
q a y b k x
+
≈
∆
3211223213
20
0
2023022202
THE COMPENSATING FOR THE FORCE BORE ON THE PILOT POPPET
The disadvantage of general relief valve is that the system pressure increases with the increasing of the overflow, and the higher the system pressure, the greater the override pressure (Fig.4 shows).
Fig.4 The experimental curve of the override pressure
changing with the overflow under different system pressure
According to the results above, the override pressure of the relief valve can be compensated by attaching
2
1
30 25 20 15 10
5
P1(Mpa)
qx(L/min))
q2(L/min))
200100
Trang 20force, spring force, etc., when the main overflow varies.
Compensating force Fc :
Fc= p3a3 19
According to equation (2), the hydraulic resistance of
the pilot valve port under a steady-state point is as
follows[2]:
y b
p p q
a
2
322
=
∆
=
In order to discuss the general hydraulic resistance
property of the pilot valve port, the above equation can
q q
p p
R = ∆ − ∆ − ∆
0221020
a a q y
b k a q
y
b
y b k a
q
3 0 2 2 2 2 20 2
3 2 2 20 3
0 2 2 2 2
2
20
) 2
(
) ( 8 ) 2
(
2 4
Where the latter part of the numerator in the first
fraction can be omitted when compared with the former
part, the other parameters in formula (23) are positive,
therefore, the hydraulic resistance of the pilot valve port
decreases with the increasing of the pilot flow The
second part of the square bracket of the formula (23)
results from the compensating force, which results in
more reducing the hydraulic resistance of the pilot valve
port with the increasing of the pilot flow The greater
the parameter a3 or the smaller the parameter c3, the
greater the compensating force and the decreasing
amplitude of the pilot valve port hydraulic resistance.
From formulas (9) and (21), get:
Fig 5 The emulation curve of the compensating force varying with the changing of the pilot flow
THE CONTROLLABILITY OF THE FLOW-PRESSURE CHARACTERISTIC
OF THE RELIEF VALVE
Because the changing amplitude of the compensating force with the varying of the pilot flow is mainly dependent on the structural parameters a3 and c3
according to formula (24), it is reasonable to change the hydraulic resistance property which varies with the changing of pilot flow According to the formula (7)~(10) and (21):
∆ p1= λ ∆ Fc 25
) 2
(
2 2
) (
3 0 2 2 2 20 3 2
2 3 2 20 2 2 2 20 2 2 3 0 2 2 2 2 0 2
y b k q a c
c a q c a q c c y b k c c y k
+
− +
+ +
=
λ
26 From formula (25), it can be seen that different λ will
results in different characteristic of the control pressure p1 varying with the compensating force:
λ >0 p1 increases with the increasing of the compensating force, this is under-compensated
; λ =0 p1 keeps constant, and does not change with the compensating force, right-compensated;
λ <0 p1 decreases with the increasing of the compensating force, over-compensated.
Meanwhile, the value of λ is only dependent on the
structural parameters and pilot flow In formula (26), the value of denominator is positive, so, whether the value of λ is positive, zero or negative is decided by
the value of the numerator The first two parts of the numerator in the formula (26) can be omitted when compared with the others, so the value of λ is
mainly dependent on the last two parts , i.e.
a c a c2
1323
2 − >0 λ >0
a c a c2
1323
2 − =0 λ =0
a c a c2
1323
2 − <0 λ <0
Consequently, the value of λ is mainly dependent on
the arrangement of the parameters a2, a3, c1, c3, When the parameters a2 and c1 are fixed, the value of λ is
decided by a3 and c3 Fig.6 shows the theoretical relationship of the control pressure varying with the compensating force under different parameter value
Trang 21Fig.6 The emulation curve of the control pressure
varying with the changing of the compensating force
From formulas (24) and (25):
c
a q
p1= ⋅ 2 202 3∆ 2
According to formulas (18) and (27), it can be seen that
the flow-pressure relationship of the relief valve is also
dependent on the value of λ , i.e there exists different
flow-pressure characteristic of the relief valve with
the different matching of the parameters a2, a3, c1, c3:
under-compensated, λ >0, the pressure increases with
the increasing of the overflow; right-compensated,
λ =0 the pressure
keeps constant, and does not change with overflow;
over-compensated, λ <0 the pressure decreases
with the increasing of the overflow.
EXPERIMENT ON FLOW-PRESSURE
CHARACTERISTIC OF THE RELIEF
VALVE
Fig.1 shows the structure of the experimental valve
(NG10), the relational structural parameters are as
Consequently, it is reasonable to obtain the pressure characteristic required according to the different parameters of the pilot hydraulic circuit Some kinds of pressure valves have been manufactured by applying the above principle by Roxroth Ltd Fig.8 shows one of the products, a pilot operated pressure relief valve[4].
flow-Fig.8 The structure and principle of the relief valve of
Roxroth Ltd.
CONCLUSIONS
(1) The pilot operated pressure valve is made up of parallel hydraulic network which formed by the hydraulic circuit of the pilot valve and that of the main valve port The pilot flow increases with the increasing
of the main overflow, and the greater the system pressure, the more the variation of the pilot flow varying with the overflow.
(2) The flow-pressure characteristic of the pilot operated pressure valve can be compensated by altering the equilibrium state of the force bore on the pilot poppet through attaching hydraulic resistance in the pilot poppet.
(3)There exists different flow-pressure characteristic with different compensating degree of the force bore on the pilot poppet: under-compensated, the flow- pressure curve will be bent upwards; right- compensated, kept flat; over-compensated, bent downwards.
(4) The principle of compensating the override pressure
of the relief valve by attaching a hydraulic resistance in
Fig.7 The experimental curves of the
flow-pressure characteristic of the relief valve
Trang 22Chinese) Machine tool and hydraulics 1989(6):21~23
[2] Backé W, Zhu Wen Hydraulic resistance circuit
systemology, (in Chinese) Beijing: China
machinery press 1980
[4] Rexroth Induetrieventile und Zubehör RD00101/09.92, ss.165
Trang 23Source English Français Deutsch
abrasion (f)
Usure, émoulage ou frottage de matériaux dans des éléments méca-niques
NOTE – Les produits de l’abrasion seront présents dans le système en temps que contamination particu-laire générée
Abrieb (m)
Abnutzen, abschleifen oder ben von Material an mechanischen Teilen
abscha-ANMERKUNG: Der Abrieb ist als erzeugte Feststoffverschmutzung in der Anlage vorhanden
Pressure using absolute vacuum as
a reference (See figures 1 and 2.)
pression (f) absolue
Pression utilisant le vide absolu comme référence (voir figures 1 et 2)
Absolutdruck (m)
Druck bezogen auf das absolute Vakuum (Siehe Bilder 1 und 2.)
Separator that retains certain ble and insoluble contaminants by molecular adhesion
solu-séparateur (m) par absorption
Séparateur qui retient certains taminants solubles et insolubles par adhérence moléculaire
con-absorbierender Abscheider
(m)
Abscheider, der bestimmte lösliche und nichtlösliche Verschmutzung durch molekulare Adhäsion zurück-hält
Output the power of which in all sible states of the device is derived from supply power
pos-sortie (f) active
Sortie de puissance d’un appareil dont tous les états possibles ne dépendent que de l’énergie d’ali-mentation
aktiver Ausgang (m)
Ausgang, der seine Energie in allen Schaltzuständen des Gerätes nur von der Energieversorgung bezieht
Valve that requires a power supply independent of the value of input signals
distributeur (m) actif
Distributeur qui nécessite une mentation indépendante de la valeur des signaux d’entrée
ali-aktives Ventil (n) (P)
Ventil, das unabhängig von der Größe der Eingangssignale eine Energieversorgung erfordert
temperature
Temperature of a component sured at a specified point at a given time
mea-température (f) réelle d’un
composant
Température d’un composant rée en un point déterminé à un instant donné
mesu-Bauteil-Isttemperatur (f)
Temperatur eines Bauteiles sen an einem bestimmten Punkt zu einer bestimmten Zeit
gemes-ISO 8625-3 -
done
actual fluid temperature
Temperature of the fluid measured
at a specified point in a system at a given time
température réelle (f) d’un
fluide
Température d’un fluide mesurée en
un point déterminé d’un système à
un instant donné
Fluid-Isttemperatur (f)
Temperatur eines Fluids gemessen
an einem bestimmten Punkt in der Anlage zu einem bestimmten Zeit-punkt
Pressure existing at a particular point at a particular time
Final position of the valving element under the influence of the actuating forces
position (f) commandée
Position finale dans laquelle se trouve un élément de manoeuvre de distribution sous l’action des forces
de commande
geschaltete Stellung (f)
Position die das Schaltelement unter Einwirkung der Betätigungskräfte eingenommen hat
Time during which the component is actuated
Trang 24Druck-N 37- done adaptor
Device that allows connection of parts whose interfaces are incompa-tible
adaptateur (m)
Dispositif permettant de relier des pièces dont les interfaces sont incompatibles
Adapter (m)
Gerät zum Verbinden von Teilen mit unterschiedlichen Anschlüssen/Anschlußbildern
Chemical added to a hydraulic fluid
to impart new properties or to enhance those which already exist
Der Druckflüssigkeit zugesetzte Chemikalie, um ihr neue Eigen-schaften zu verleihen oder um bereits bestehende Eigenschaften
zu verbessern
Flow control valve with a restrictable flow path between the inlet and out-let ports The cross-sectional area of the restrictable flow path can be varied within limits
réducteur (m) de débit
réglable
Régulateur de débit à voie réduite entre les orifices d’entrée et de sor-tie La section de passage restreinte peut varier entre certaines limites
einstellbares Drosselventil (n)
Stromventil, in dem zwischen Ein- und Ausgang eine veränderbare Drosselstelle ist, deren Querschnitt innerhalb von Grenzen verändert werden kann
Cylinder in which the position of a stop can be changed to permit the length of the stroke to be varied
vérin (m) à course réglable
Vérin dans lequel la position d’arrêt peut être modifiée pour permettre un changement de longueur de course
Zylinder (m) mit einstellbarem
adjustable stud end connector
Stud end connector that allows cific orientation before final tighte-ning
spe-connecteur (m) à extrémité
orientable
Connecteur dont l’extrémité permet une orientation spécifique avant le serrage final
richtungseinstellbarer
Einschraubzapfen (m)
Anschlußteil, mit dem die schraubung vor dem endgültigen Festziehen der Gegenmutter ausge-richtet werden kann
com-agglomérat (m)
Combinaison, juxtaposition ou regroupement par n’importe quel moyen de deux ou plusieurs particu-les
Agglomerat (n)
Zwei oder mehr Teilchen, die wie miteinander verbunden sind
Means of purging air from a system
Device that allows the exchange of air between a component (e.g
reservoir) and the atmosphere
reniflard (m)
Dispositif qui permet l’échange d’air entre un composant (par exemple, réservoir) et l’atmosphère
Belüfter (m)
Vorrichtung, die den Austausch von Luft zwischen einem Bauteil (z.B Behälter) und der Atmosphäre erlaubt
5.3.8 and from
96-03 meeting -
done
air breather capacity
Measure of air flow rate through an air breather
capacité (f) en débit d’un
Sub-system that converts cal energy into pneumatic fluid power
mechani-compresseur (m) d’air (P)
Sous-système qui convertit gie mécanique en énergie pneuma-tique
l’éner-Kompressor (m) (P)
Teilanlage, die mechanische gie in pneumatische Energie wan-delt
Trang 25Ener-8.4 - done air conditioning unit (P)
(pref.); FRL unit (P) (sec.)
Assembly usually comprising a filter,
a pressure regulator and a tor, intended to deliver compressed air in suitable condition
lubrica-ensemble (m) de conditionnement d’air (préf.);
ensemble FRL (P) (sec.)
Ensemble comprenant un filtre, un régulateur de pression et un lubrifi-cateur, destiné à fournir un air com-primé dans des conditions appropriées
Druckluft-Wartungseinheit (f) (P); FRL-Einheit (f) (P)
Baugruppe, die aus einem Filter, einem Druckregelventil und einem Öler besteht und aufbereitete Druck-luft liefert
Air flow required to perform a given task or volume of air used over a stated period of time
consommation (f) d’air (P)
Flux d’air nécessaire pour réaliser une tâche donnée ou volume d’air utilisé sur une période de temps déterminée
Luftverbrauch (m) (P)
Für eine bestimmte Aufgabe tigter Luftvolumenstrom oder benö-tigtes Luftvolumen während einer bestimmten Zeit
Equipment for reducing the moisture vapour content of the compressed air
sécheur (m) d’air (P)
Équipement permettant de réduire le contenu en vapeur humide de l’air comprimé
Lufttrockner (m) (P)
Gerät zur Reduzierung des tigkeitsgehaltes der Druckluft
Port which provides passage to the exhaust system
Component the function of which is the retention of contaminants from atmospheric air
filtre (m) à air (P)
Composant ayant pour fonctions de retenir les polluants et d’enlever l’eau contenue dans l’air comprimé
Luftfilter (m) (P)
Bauteil, dessen Funktionen die Zurückhaltung der Verschmutzungs-stoffe aus der Druckluft und die Abscheidung von Wassertröpfchen ist
from comment
Type of flow control valve that, under normal circumstances, allows free flow in both directions, but that, in the event of a piping failure on either side of the component, will reduce the flow rate to a very low value
NOTE – Full flow conditions will not
be restored until the failure is fied An air fuse may be used as a safety component and/or to reduce air wastage
Volume of air in a system’s fluid
NOTE – Air inclusion is expressed in percentage of volume
Continuous rotation motor that is actuated by compressed air
Compressed air filter used where a very clean air supply is necessary
purificateur (m) d’air (P)
Filtre à air comprimé comportant un élément filtrant à haute efficacité, uti-lisé lorsqu’il est nécessaire d’avoir une alimentation en air très propre
Luft-Feinfilter (m,n) (P)
Druckluftfilter mit einem ment, das einen hohen Abscheide-grad hat
Ability of a hydraulic fluid to release air bubbles dispersed there in
Trang 265.2.4.8 - done air-line drain port (P)
Port that enables liquid to be drained from a pneumatic system
orifice (m) de purge d’air (P)
Orifice permettant d’évacuer le liquide drainé dans un système pneumatique
Wasserablaßanschluß (m) (P)
Austrittsöffnung zum Ablassen einer Flüssigkeit aus einer pneumatischen Anlage
See pneumatic-hydraulic converter.
Conditions (e.g pressure, ture, etc.) of the immediate surroun-dings of the system
tempera-conditions (f) ambiantes
Conditions règnantes (par exemple prression, température, etc.) dans l’environnement immédiat d’un système
Umgebungsbedingungen (f)
Bedingungen (z.B Druck, tur) in der unmittelbaren Umgebung der Anlage
Temperature of the environment in which the component, piping or system is working
température (f) ambiante
Température de l’environnement dans lequel est utilisé le composant,
le tuyautage ou le système
Umgebungstemperatur (f)
Temperatur des umgebenden mes, in dem das Bauteil, das Lei-tungssystem oder die Anlage arbeitet
See axial piston motor, bent axis design.
moteur (m) à pistons inclinés
Voir moteur à pistons axiaux, ception à axes inclinés.
con-Siehe Axialkolbenmotor,
Schrägach-senbauweise.
See axial piston pump, bent axis design.
pompe (f) à pistons inclinés
Voir pompe à pistons axiaux, ception à axes inclinés.
con-Siehe Axialkolbenpumpe,
Schräg-achsenbauweise.
N 37 and Mr
Non-return valve used to assist in the prevention of cavitation
Ability of a hydraulic fluid to prevent metal corrosion
NOTE – This is particularly important
in the case of water containing fluids
Korrosionsschutzvermögen
(n) (H)
Fähigkeit einer Druckflüssigkeit, vor metallischer Korrosion zu schützen.ANMERKUNG: Dies ist besonders bei wasserhaltigen Druckflüssigkei-ten von Bedeutung
back-up ring (sec.)
Device in the form of a ring which is designed to prevent extrusion of a seal into a clearance between the two mating parts being sealed
bague (f) anti-extrusion
(préf.); bague (f) d’appui (sec.)
Dispositif ayant la forme d’une bague, conçu pour empêcher l’extrusion d’un joint dans le jeu des deux pièces correspondantes à étancher
Stützring (m)
Ringförmiges Element, das das eindrängen eines Dichtungselemen-tes in den Spalt zwischen zwei abzudichtenden Teilen verhindert
Verschleißschutzvermögen
(n) (H)
Fähigkeit einer Druckflüssigkeit, metallische Berührungen zwischen sich bewegenden Oberflächen unter bekannten Betriebsbedingun-gen durch Erhaltung eines Flüssig-keitsfilms zu verhindern
Trang 27done assembly
Sub-division of a system or stem, comprising two or more inter-connected components
subsy-assemblage (m)
Subdivision d’un système ou d’un sous-système comprenant au moins deux composants intercon-nectés
Baugruppe (f)
Teil einer Anlage oder einer lage, der zwei oder mehr miteinan-der verbundener Bauteile umfaßt
Teilan-ISO 8434-1,
8434-2, 8434-3
and 8434-4 -
done
assembly torque (pref.);
mounting torque (sec.)
Torque required to achieve a factory final connection
zu erreichen
ISO 8573-1 -
Dewpoint measured at atmospheric pressure
NOTE – The term “atmospheric dewpoint” should not be used in con-nection with compressed-air drying
Absolute pressure of the atmosphere at a given location and time (See figures 1 and 2.)
pression (f) atmosphérique
Pression absolue de l’atmosphère
en un lieu et à un instant donnés
(Voir figures 1 et 2.)
Atmosphärendruck (m)
Absolutdruck der Atmosphäre an einem bestimmten Ort und zu einer bestimmten Zeit (Siehe Bilder 1 und 2.)
Reservoir for storing hydraulic fluid
at atmospheric pressure
réservoir (m) atmosphérique
(H)
Réservoir servant à emmaganiser
du fluide hydraulique à la pression atmosphérique
belüfteter Behälter (m) (H)
Behälter in dem die Flüssigkeit unter atmosphärischem Druck steht
DIN 24550T1 -
Hydraulic filter that is attached to the reservoir and whose housing pene-trates the reservoir wall It uses interchangeable filter elements and filters hydraulic fluid from the return line
filtre (m) de retour non
amovible (H)
Filtre hydraulique fixé à un réservoir
et dont le corps pénètre dans la paroi du réservoir Ce filtre utilise des éléments filtrants interchangea-bles et filtre le fluide hydraulique de
la ligne de retour
Anbau-Rücklauffilter (n, m) (H)
Hydraulikfilter mit auswechselbarem Filterelement, dessen Gehäuse am Behälter angebaut ist und mit der Auslauföffnung in den Behälter hin-einragt
DIN 24550T1 -
Hydraulic filter that is attached to the reservoir and whose housing pene-trates the reservoir wall It uses interchangeable elements and fil-ters hydraulic fluid entering the suc-tion line
filtre (m) d’aspiration non
amovible (H)
Filtre hydraulique fixé à un réservoir
et dont le corps pénètre dans la paroi du réservoir Ce filtre utilise des éléments filtrants interchangea-bles et filtre le fluide hydraulique entrant par la ligne d’aspiration
Anbau-Saugfilter (n, m) (H)
Hydraulikfilter mit auswechselbarem Filterelement, dessen Gehäuse am Behälter angebaut ist und mit der Ansaugöffnung in den Behälter hin-einragt
Temperature at which the fluid hes into flame without an external ignition source
flas-NOTE – Actual value is to be mined by one of several approved test methods
Selbstzündungstemperatur (f)
Temperatur, bei der sich die keit ohne äußere Zündquelle ent-zündet
Flüssig-ANMERKUNG – Der tatsächliche Wert muß nach einem der zugelas-senen Prüfverfahren bestimmt wer-den
Drain valve that automatically discharges any contamination that has been collected, when a prede-
Trang 2810.4.2.3 - done automatic particle counting
Measurement of solid particle mination in a fluid by automatic means
conta-comptage (m) automatique de
particules
Mesure de la pollution particulaire d’un fluide par des moyens automa-tiques
automatische Partikelzählung
(f)
Automatische Messung der stoffverschmutzung in einem Druck-medium
Valve designed to close cally when the pressure drop across the valve, caused by increased flow, exceeds a predetermined amount
automati-vanne (f) d’isolement
automatique
Vanne conçue pour se fermer matiquement lorsqu’une perte de charge de la vanne, due à une aug-mentation du débit, excède une valeur prédéterminée
auto-Leitungsbruchventil (n)
Ventil, das selbsttätig sperrt, wenn durch einen zu hohen Volumen-strom eine vorgegebene Druckdiffe-renz überschritten wird
Receiver that is installed in the system to supply local demands
réservoir (m) auxiliaire d’air
(P)
Réservoir installé dans un système pour régulariser les demandeslocales d’alimentation
Druck-Ausgleichsbehälter
(m) (P)
Behälter in einer Pneumatikanlage zur Kompensation von örtlichen Ver-brauchsschwankungen
3.2.2.1.8.2 -
Hydraulic motor having several pistons which are parallel to one another
moteur (m) à pistons axiaux
(H)
Moteur hydraulique possédant sieurs pistons parallèles les uns aux autres
plu-Axialkolbenmotor (m) (H)
Hydromotor mit mehreren Kolben, die parallel zueinander angeordnet sind
from 96-03
design (pref.);
angled piston motor (sec.)
Axial piston motor in which the drive shaft is at an angle to the common axis
moteur (m) à pistons axiaux,
conception à axes inclinés
(préf.); moteur (m) à pistons
inclinés (sec.)
Moteur à pistons axiaux dans lequel l’arbre d’entraînement est incliné par rapport à l’axe commun
Axialkolbenmotor (m),
Schrägachsenbauweise
Axialkolbenmotor, bei dem die Abtriebsachse und die Kolbenach-sen winklig zueinander stehen
moteur (m) à pistons axiaux,
conception à plateau oscillant
Moteur à pistons axiaux dans lequel l’arbre d’entraînement est aligné avec l’axe commun Le plateau osci-llant n’est pas relié à l’arbre d’entraî-nement
Axialkolbenmotor (m),
Schrägscheibenbauweise
Axialkolbenmotor, bei dem die Abtriebsachse und die Kolbenach-sen zueinander parallel sind.Die nicht mit der Abtriebsachse ver-bundene Schrägscheibe steht dabei fest
Hydraulic pump having several pistons which are parallel to one another
pompe (f) à pistons axiaux (H)
Pompe hydraulique possédant sieurs pistons parallèles les uns aux autres
plu-Axialkolbenpumpe (f) (H)
Hydropumpe mit mehreren Kolben, die parallel zueinander angeordnet sind
design (pref.);
angled piston pump (sec.)
Axial piston pump in which the drive shaft is at an angle to the common axis
pompe (f) à pistons axiaux,
conception à axes inclinés
(préf.); pompe (f) à pistons
inclinés (sec.)
Pompe à pistons axiaux dont l’arbre d’entraînement forme un angle avec l’axe commun
Axialkolbenpumpe (f),
Schräg-achsenbauweise
Axialkolbenpumpe, bei der die Antriebsachse und die Kolbenach-sen winklig zueinander stehen
design
Axial piston pump in which the drive shaft is in line with the common shaft The swash plate is not connected to the drive shaft
pompe (f) à pistons axiaux,
conception à plateau oscillant
Pompe à pistons axiaux dont l’arbre d’entraînement est aligné avec l’axe commun Le plateau oscillant n’est pas relié avec l’arbre
Trang 29done axial piston pump, wobble
design
Axial piston pump in which the drive shaft is in line with the common shaft Pistons are actuated by a swashplate which is connected to the drive shaft
pompe (f) à pistons axiaux,
conception à plateau oscillante
Pompe à pistons axiaux dont l’arbre d’entraînement est aligné avec l’axe commun Les pistons sont actionnés par un plateau oscillant, qui est relié
Sealing device that seals by axial contact force
Pressure which acts against force or pressure
See anti-extrusion ring.
Connector, attached using a hollow bolt that provides for fluid flow, which permits fluid flow at a plane 90° to the connecting port, and in any direction (360o) therefrom
connecteur (m) banjo
Connecteur auquel est adjoint un boulon creux permettant le passage d’un fluid fluide dans un plan 90° de l’orifice de connexion et à partir de là dans toutes les directions (360°)
Ringstutzen (m)
Verbinder, der unter Verwendung einer Hohlschraube – ausgelegt für Durchfluß – befestigt ist, und der Durchfluß, im 90°-Winkel zum Anschluß, in jede Richtung erlaubt.3.2.2.1.7.2 -
Vane motor in which the transverse forces on the rotor are balanced
moteur (m) à palettes
équilibré
Moteur à pallettes dans lequel les forces radiales qui agissent sur le rotor sont équilibrées
ausgeglichener
Flügelzellenmotor (m)
Flügelzellenmotor, in dem die len Kräfte auf den Rotor ausgegli-chen sind
radia-ball valve
Valve in which ports are connected
or sealed off by a rotating shaped valving element containing flow paths
ball-soupape (f) à bille
Soupape dont les orifices sont cordés ou étanchés par un élément
rac-de manoeuvre rac-de distribution rotatif
en forme de bille contenant les sages assurant l’écoulement
pas-Kugelhahn (m)
Ventil, bei dem die gen durch ein drehbares kugelförmi-ges Element, das die Strompfade (Durchflußwege) enthält, freigege-ben oder gesperrt werden
Anschlußöffnun-N 24 and Anschlußöffnun-N 59 -
done
bellows actuator
Type of single acting linear actuator
in which mechanical force and motion are produced by the expan-sion of a flexible bellows, consisting
of one or more convolutes, without the use of a piston and piston rod
actionneur (m) à soufflets
Type d’actionneur linéaire simple dans lequel la force mécanique et le mouvement sont produits par l’extension de soufflets flexibles, comprenant une ou plusieurs circon-volutions, sans utilisation d’un piston
et d’une tige de piston
Balgzylinder (m)
Einfachwirkender Linearantrieb, in dem mechanische Kraft und Bewe-gung durch Ausdehnung eines flexi-blen, ein- oder mehrfaltigen Balgs, ohne Kolben und ohne Kolben-stange, aufgebracht wird
Filter element designed to filter fluid
Zwei-Richtungs-Filterelement
(n)
Filterelement zum Filtern von den in zwei Richtungen
Trang 30Flui-4.3.1.9 - done bi-directional pressure relief
valve
Pressure relief valve having two ports, either of which can be used as the inlet when the other will become the outlet without making any physi-cal change or adjustment to the valve
soupape (f) de décharge de
pression bidirectionnelle
Soupape de décharge de pression à deux orifices pouvant être indif-féremment utilisés comme entrée ou comme sortie, sans avoir à effectuer une modification physique ou un réglage de la soupape
Zwei-Richtungs-Druckbegrenzungsventil (n)
Druckbegrenzungsventil mit zwei Anschlüssen, von denen jeder als Eingang verwendet werden kann Der andere Anschluß ist dann jeweils Ausgang, ohne Veränderun-gen am Ventil vornehmen zu müs-sen
Gas-loaded accumulator in which separation is achieved by a flexible bladder
accumulateur (m) à vessie (H)
Accumulateur à gaz dans lequel le liquide et le gaz sont séparés par une vessie flexible (sac fexible) nor-malement retenue à une extrémité
du corps de l’accumulateur
Blasenspeicher (m) (H)
Gasdruckspeicher, in dem die sigkeit vom Gas durch eine flexible Blase getrennt wird und im Normal-fall an einem Behälterende zurück-gehalten wird
Line through which air is purged from a hydraulic system
Form of pilot-operated non-return valve screwed directly into a cylinder inlet port, so that air will be trapped
in the cylinder when the pilot signal
is removed
Simple manually-operated two-port valve used to discharge compressed air to atmosphere
Seal using elastomeric material bonded to a rigid substrate
Static gasket seal consisting of a flat metal washer bonded to a concentric elastomeric sealing ring
rondelle (f) composite
Garniture d’étanchéité statique prenant une rondelle métallique plate accolée à un anneau concen-trique en élastomère
com-Verbunddichtungsscheibe (f)
Statische Flachdichtung, bestehend aus einer metallischen Dichtungs-scheibe, die mit einem konzentri-schen elastomeren Dichtungsring verbunden ist
Pressure at which replenishing liquid
is supplied (usually to closed loop circuits or second stage pumps)
pression (f) de gavage
Pression à laquelle le liquide de remplissage est introduit (habituelle-ment dans des circuits fermés ou dans le second étage des pompes)
Speisedruck (m)
Druck, unter dem eine Flüssigkeit ergänzt wird (üblicherweise für geschlossene Getriebekreise oder Zweistufenpumpen)
breakout pressure (sec.)
Minimum pressure necessary to initiate movement
pression (f) d’amorçage
Pression minimale nécessaire pour initier le mouvement
Losbrechdruck (m) (pref.); Anfahrdruck (m) (sec).
Erforderlicher Mindestdruck, um eine Bewegung einzuleiten
See breakaway pressure.
pression (f) de
déchenchement
Voir pression d’amorçage
Siehe Losbrechdruck.
Trang 31done bulk modulus of a fluid
Relationship between a change in pressure applied to a fluid and the resultant volumetric strain
coefficient (m) de charge d’un
fluide
Relation entre la charge appliquée sur toutes les parties du fluides et la déformation volumétrique Cela mesure la résistance à la compressi-bilité d’un fluide et c’est l’inverse de
Connector for tubes and hoses on either side of a bulkhead or wall which allows fluid passage through the bulkhead or wall
connecteur (m) passe-cloison
Connecteur disposé de chaque cơté d’une cloison ou d’un mur pour rac-corder des tubes ou des flexibles et permettant le passage du fluide à travers cette cloison ou ce mur
Schottstutzen (m)
Stutzen für Rohre und Schläuche auf jeder Seite eines Schotts oder einer Trennwand, der Fluidstrom durch das Schott oder die Trenn-wand hindurch erlaubt
Outward structural failure caused by excessive pressure (for example, fil-ter burst, hose burst)
rupture (f)
Défaillance structurelle laissant échapper vers l’extérieur, le contenu d’une enveloppe solide, due à une pression excessive (par exemple, rupture de filtre, rupture de flexible)
Bersten (n)
Nach außen gerichtetes Versagen des Materialgefüges durch zu hohen Druck (z.B Filterbersten, Schlauch-bersten)
Test pressure at which a component
or piping fails and fluid begins to escape (See figure 2.)
pression (f) de rupture
Pression d’essai à laquelle un posant ou le tuyautage devient défaillant et ó le fluide commence à s’échapper (voir figure 2)
com-Berstdruck (m)
Prüfdruck, bei dem ein Bauteil oder Leitungssystem birst und Fluid aus-tritt (Siehe Bild 2)
Straight-through valve in which the valve element consists of a flat disc rotating about a diametrical axis per-pendicular to the flow of fluid
vanne (f) papillon
Vanne à passage direct dans laquelle l’élément de distribution est constitué par un disque plat tournant autour d’un axe perpendiculaire à l’écoulement du fluide
Klappe (f)
Absperrarmatur, bei der das Schließelement eine Scheibe ist, die sich um eine senkrecht zur Strư-mungsrichtung stehende Achse dre-hen läßt
See three-port flow control valve.
régulateur (m) de débit à
dérivation
Voir régulateur de débit à trois voies.
Siehe Drei-Wege-Stromregelventil.
Valve that can operate only in junction with an associated housing containing the necessary flowpaths
con-distributeur (m) à cartouche
Distributeur qui peut fonctionner qu’inclus dans un fourreau ayant les conduits d’écoulement nécessaires
Patronenventil (n)
Ventil , das nur in Verbindung mit einem zugehưrigen Gehäuse, das die notwendigen Durchflußpfade enthält, funktioniert
Formation of cavities, either ous or vapour, within a liquid stream, which occurs where the pressure is locally reduced to the critical pres-sure, normally the vapour pressure
gase-of the liquid
NOTE – During the state of tion, the liquid can move across the cavities at high velocity, producing a hammer effect, which may not only cause noise but eventual damage to components
cavita-cavitation (f) (H)
Phénomène du à la formation de cavités sous forme de bulles de gaz
ou de vapeur au sein d’un liquide en mouvement, et qui se produit lors-que la pression dans le liquide devient localement inférieure à la tension de vapeur de celui-ci
NOTE – Lorqu’il y a cavitation, le liquide peut se mouvoir à une grande vitesse, à travers les cavités produisant un effet de coup de mar-teau, qui peut non seulement créer des vibrations de type bruit mais aussi éventuellement endommager les composants
Kavitation (f) (H)
Bildung von Hohlräumen, gas- oder dampffưrmig, in einem Flüssigkeits-strom, die dann eintritt wenn der Druck ưrtlich bis zum Dampfdruck der Flüssigkeit absinkt
ANMERKUNG: Im Zustand der Kavitation kann sich die Flüssigkeit mit hoher Geschwindigkeit in diese Hohlräumen bewegen, einen Ham-mereffekt erzeugend, der nicht nur Geräusch verursacht, sondern evtl auch Bauteile zerstưrt
Trang 32N 37 - done centre open to exhaust
position (P) (pref.); negative position (sec.); supply sealed mid-position (sec.)
Valve centre position in which the inlet supply is not connected to an outlet, but outlets are connected to exhaust
symbol
position (f) centre ouvert à l’échappement (P) (préf.);
position (f) négative (sec.);
position (f) milieu avec alimentation étanche (sec.)
Position centrale d’un distributeur dans laquelle l’alimentation à l’ent-rée n’est pas reliée à une sortie, mais ó les sorties communiquent avec l’échappement
symbole
Mittelstellung (f), entlüftet (P)
Mittlere Stellung des Ventils, in der der Versorgungsanschluß gesperrt ist und die Arbeitsanschlüsse mit den Entlüftungsanschlüssen verbun-den sind
position (P) (pref.); positive position (sec.)
Valve centre position in which the inlet supply is connected to both out-lets and exhaust ports are closed
symbol
position (f) centre ouvert sous pression (préf.); position (f) positive (sec.) (P)
Position centrale d’un distributeur dans lequel l’alimentation à l’entrée est en communication avec les sor-ties, les échappements étant fer-més
symbole
Mittelstellung (f), belüftet (P)
Mittlere Stellung des Ventills, in der der Versorgungsanschluß mit bei-den Arbeitsanschlüssen verbunden ist und die Entlüftungsanschlüsse gesperrt sind
Filter in which contaminants are retained from the fluid by circulating fluid in a rotary manner
filtre (m) centrifuge
Filtre dans lequel la séparation des polluants est obtenue en animant le fluide d’un mouvement circulaire
Zentrifuge (f)
Filter, bei dem die Schmutzstoffe durch kreisfưrmige Bewegung des Fluids zurückgehalten werden
Pump in which the increase of fluid energy is derived from kinetic energy (the quantity of fluid delivered is rela-ted to the output pressure)
pompe (f) centrifuge
Pompe dans laquelle ment d’énergie fluide provient de l’énergie cinétique (la quantité de fluide fournie est fonction de la pres-sion de sortie)
l’accroisse-Kreiselpumpe (f)
Eine Pumpe, bei der der wachs eines Fluids im wesentlichen von der kinetischen Energie bestimmt wird (der Fưrderstrom ist abhängig vom Ausgangsdruck)
Separator that uses radial tion to isolate liquid and/or solid par-ticles of specific gravity different from that of the fluid being cleaned
Fliehkraftabscheider (m)
Abscheider, der mittels radialer Beschleunigung flüssige und/oder feste Teichen, deren spezifisches Gewicht unterschiedlich zu dem des
zu reinigenden Fluids ist, aus sem entfernt
Pressure to which a component is charged or inflated
See non-return valve.
clapet (m) anti-retour
Occurrence when upstream
pres-sure, p1, is high in relation to the
downstream pressure, p2, such that the velocity in some part of the com-ponent becomes sonic The mass flow of the gas is proportional to the
upstream pressure, p1, and dent of the downstream pressure,
indepen-p2
écoulement (m) sonique (P)
Situation qui se produit lorsque la pression amont, p1, est suffisament élevée par rapport à la pression aval, p2, de manière à ce que la vitesse du fluide devienne sonique
en un point du composant Le masse du gaz est proportionnel à la pression amont, p1, et indépendant
débit-de la pression aval, p2
überkritische Strưmung (f) (P)
Erscheinung, die auftritt, wenn der
Eingangsdruck p1 im Verhältnis zum
Ausgangsdruck p2 so groß ist, daß die Durchflußmenge proportional
dem Eingangsdruck p1 und
unab-hängig vom Ausgangsdruck p2 ist Dieser Zustand ist erreicht, wenn die Luftgeschwindigkeit an irgendeiner Stelle des durchstrưmten Bauteiles der Schallgeschwindigkeit ent-spricht
Trang 335.8.2.1- done cleanable filter element
Filter element that when clogged can
be restored by a suitable process to
an acceptable percentage of its ginal flow/pressure differential cha-racteristic
ori-élément (m) filtrant nettoyable
Elément filtrant qui, lorsqu’il est maté, peut être régénéré par un procédé convenable, en obtenant un pourcentage acceptable de la carac-téristique de débit/pression différen-tielle existant à l’état origine
col-reinigbares Filterelement (n)
Filterelement, das, wenn es schmutzt ist, durch ein geeignetes Verfahren soweit gereinigt werden kann, daß ein akzeptabler Prozent-satz der ursprünglichen Volumen-strom-/Druckdifferenz-Charakteri-stik wieder erreicht wird
Opposite of contamination level
Verstopfung (f)
Volumenstromreduzierung durch Ablagerung von festen oder flüssi-gen Teilchen
Valve centre position which causes all valve ports to be closed
symbol
position (f) centre fermée
Position centrale d’un distributeur qui correspond à la fermeture de tous les orifices
Mittelstellung(f), geschlossen
Mittlere Stellung eines Ventiles, bei der alle Ventilanschlüsse geschlos-sen sind
8.5.11 and
Circuit in which return fluid is ted to the pump inlet
direc-circuit (m) fermé (H)
Circuit dans lequel le fluide fait tement retour à l’entrée de la pompe
direc-geschlossener Kreislauf (m)
(H)
Schaltung, bei der der strom direkt zum Pumpeneingang geleitet wird
Position of the valving element which causes all valve ports to be closed
position (f) fermée (H)
Position de l’élément de manoeuvre
de distribution qui provoque la meture de tous les orifices
fer-geschlossene Stellung (f)
(Sperrstellung) (H)
Stellung des Schaltelementes, bei der alle Ventilanschlüsse geschlos-sen sind
Position of the valving element in which inlet supply is not connected
to an outlet
position (f) fermée (P)
Position de l’élément de manoeuvre
de distribution pour laquelle l’entrée d’alimentation n’est pas relié à une sortie
geschlossene Stellung (f) (P)
Stellung des Schaltelementes, bei der der Versorgungsanschluß mit keinem Ausgang verbunden ist
pression (f) de fermeture
Pression utilisée pour assurer la meture d’un composant dans des conditions définies, par exemple, de débit
fer-Schließdruck (m)
Druck zum Schließen eines les unter definierten Bedingungen, z.B des Volumenstromes
Filter in which retention of nants occurs due to the difference in wetting properties on a particular porous medium, leading to liquid particles in suspension combining into particles of greater volume
contami-filtre (m) coalescent
Filtre dans lequel la rétention des polluants est due à la différence des propriétés de mouillage des consti-tuants d’un liquide sur un matériau poreux particulier, entraînant l’agglo-mération en volume des particules
en suspension dans le liquide
Coalescer-Filter (n, m)
Filter, bei dem die Abscheidung von Verunreinigungen infolge der unter-schiedlichen Feuchtigkeitsaufnah-mebereitschaft eines bestimmten porösen Filtermediums geschieht Dies führt dazu, daß die frei schwe-benden Flüssigkeitsteilchen sich zu Teilchen größeren Volumens verei-nigen
effect (P) (pref.); expansion factor (sec.)
Coefficient which takes into account the effects of the gas compressibility when flow is subsonic
coefficient (m) d’effet de
compressibilité (P)
Coefficient qui tient compte des effets de la compressibilité du gaz lorsque l’écoulement est subso-nique
Kompressibilitätsbeiwert (m)
(P)
Beiwert zur Berücksichtigung der Auswirkungen der Gaskompressibili-tät, bei unterkritischer Durchflußge-schwindigkeit
Trang 345.8.3.2 - done collapse
Inward structural failure caused by excessive pressure differential (for example, filter element collapse)
déformation (f)
Défaillance structurelle interne due à une pression différentielle exces-sive (par exemple, déformation d’un élément filtrant)
Kollabieren (n)
Nach innen gerichtetes Versagen des Materialgefüges durch zu hohes Druckgefälle (z.B Filterelementkol-labieren)
Hardened, longitudinally split ring that closes on a tube’s outside dia-meter surface, exercising grip, but not sealing
Klemmring (m)
Gehärteter, längsgeteilter Ring, der ein Rohr am Außendurchmesser fest umschließt, aber nicht abdichtet
Fluid that does not adversely ence the nature and life of a system, components, piping or another fluid
influ-fluide (m) compatible
Fluide qui n’exerce pas une ence défavorable sur la nature et la vie d’un système, de composants,
influ-du tuyautage ou sur un autre fluide
verträgliches Druckmedium
(n)
Druckmedium, das die Funktion und Lebensdauer von Bauteilen oder Leitungssystemen nicht merklich beeinflußt
composant (m)
Unité individuelle (par exemple, vérin, moteur, distributeur, filtre, mais excluant le tuyautage) com-prenant une ou plusieurs pièces conçues comme organe fonctionnel d’un système de transmissions hydrauliques et pneumatiques
Bauteil (n)
Eine einzelne Einheit (z.B Zylinder, Motor, Ventil, Filter, ausschließlich Leitungssystemen), bestehend aus einem oder mehreren Teilen, als funktionaler Bestandteil von fluid-technischen Anlagen entworfen
Filter element composed of two or more types, grades or arrangements
of filter media to provide properties that are not available in a single filter medium
élément (m) filtrant composite
Élément filtrant composé de deux ou plusieurs types, classes ou dispositi-ons de matériaux filtrant ayant des propriétés que ne possèdent pas les filtres à un seul média filtrant
Verbundfilterelement (n)
Aus zwei oder mehr Arten, heitsgraden oder Anordnungen von Fillterwerkstoffen aufgebautes Filter-element, um Eigenschaften zu erhal-ten, die mit einem einfachen Filterwerkstoff nicht erreichbar sind
Sealing device having two or more elements of different materials
NOTE – Examples of composite seals are bonded seals and rotary shaft lip seals
joint (m) composite
Dispositif d’étanchéité comprenant deux ou plusieurs éléments de matières différentes
NOTE – Les joints en aggloméré et les joints à levres pour arbre rotatif sont des exemples de joints compo-sites
zusammengesetzte Dichtung
(f)
Dichtung, die aus zwei oder mehr Elementen verschiedener Werk-stoffe besteht
ANMERKUNG: Beispiele mengesetzter Dichtungen sind Ver-bunddichtungen und Radial-Wellendichtringe
Atmospheric air compressed to a higher pressure, used as a power transmitting medium
ISO 5782-1 and
(pref.); pneumatic filter (P) (sec.)
Component designed to retain solid and liquid contaminants present in compressed air
filtre (m) à air comprimé (P)
Composant conçu pour retenir les polluants solides et liquides con-tenus dans l’air comprimé
Druckluftfilter (m, n) (P)
Bauteil zum Zurückhalten von festen und flüssigen Schmutzstoffen aus Druckluft
Trang 35NOTE – The filter is always on the upstream side of the regulator.
filtre-régulateur (m) pour air
(pref.); pneumatic lubrication
(P) (sec.)
Introduction of lubricant into the air supply to a pneumatic system or component in the form of a fine oil mist
lubrification (f) d’air comprimé
(P)
Introduction de lubrifiant sur mentation en air d’un système pneu-matique ou d’un composant, sous forme d’un fin brouillard d’huile
l’ali-Schmierstoffeintrag (m) in
Druckluft (P)
Einbringen von Schmierstoff in die Luftversorgung einer pneumatischen Anlage oder eines Bauteils in Form von feinem Ölnebel
ISO/CD 6301-1,
-2 and N 30 -
done
compressed air lubricator (P)
(pref.); pneumatic lubricator
Change in volume of a unit volume
of fluid when subjected to a unit change in pressure
compressibilité (f) d’un fluide
Variation en volume de l’unité de volume d’un fluide, soumis à une variation de pression
Kompressibilität (f) eines
Fluids
Volumenänderung einer einheit Fluid durch Änderung des Druckes um eine Einheit
Volumen-ISO 8573-1 -
Drying of air by compressing it to a higher pressure, cooling it and extracting the water condensed, and finally expanding it to the required pressure
séchage (m) d’air par
Lufttrocknung (f) durch
Verdichten (P)
Trocknen von Luft durch Verdichten auf einen höheren Druck, Abkühlen der Luft mit Entziehen des Kondens-wassers und Entspannen der Luft auf den geforderten Druck
(pref.); compression fitting (deprecated)
Connector which uses a nut pressing a ferrule to provide sealing
com-connecteur (m) à compression (préf.); raccord
(m) à compression (déconseillé)
Connecteur qui utilise un écrou primant une virole pour assurer une étanchéité
com-Schneidringverschraubung (f)
Verschraubung, die durch Anziehen eines Schneidringes mittels einer Überwurfmutter dichtet
Leitungsteil (n)
Rohr oder Schlauch, das oder der Fluid zwischen Anschlußstücken lei-tet
(deprecated)
Device that connects pipes, hoses or tubes to each other or to compon-ents, without leakage
connecteur (m) (préf.);
raccord (m) (sec.)
Dispositif qui permet la connexion de tuyaux, flexibles ou de tubes les uns aux autres ou à des composants, de manière à éviter les fuites
Anschlußstück (n);
Verschraubung (f)
Teil, das Rohre oder Schläuche einander oder mit Bauteilen ohne Leckage verbindet
Trang 36ISO 8573-1 -
Any material or combination of rials (solid, liquid or gaseous) which may adversely affect the system
mate-polluant (m)
Toute matière ou combinaison de matières (solide, liquide ou gazeuse) qui peut avoir une influence néfaste sur un système
Schmutzstoff (m)
Jedes Material oder jede kombination (fest, flüssig oder gas-fưrmig), das/die die Anlage oder den Bediener ungünstig beeinflußt.ISO/WD 11487 -
Reduction of performance caused
Set of numbers used as a shorthand method for describing the particle size distribution of contaminants in hydraulic fluid
NOTE – ISO 4406 defines such a code
parti-NOTE – L’ISO 4406 définit un tel code
Verschmutzungsklassifizie-rung (f) (H)
Zahlensystem zur einfachen mung der Partikelgrưßenverteilung von Schmutzstoffen in einer Druck-flüssigkeit
Bestim-ANMERKUNG: In ISO 4406 ist eine derartige Klassifizierung definiert
Quantitative term specifying the degree of contamination
Bestim-131/5 N 310 -
Valve that controls the flow of energy of a system in a continuous way in response to a continuous input signal
NOTE – This encompasses all types
of servo-valves and proportional control valves
distributeur (m) de commande
à fonctionnement continu
Distributeur qui commande le flux d’énergie d’un système de manière continue en réponse à un signal d’entrée continu
NOTE – Cela enveloppe tous les types de servo-distributeurs et les distributeurs de commande proporti-onnels
Stetigventil (n)
Ventil, das den Energiefluß einer Anlage proportional zu einem steti-gen Eingangssignal steuert.ANMERKUNG: Das umfaßt alle Arten von Proportional- und Servo-ventilen
Intensifier in which continuous cation of primary fluid to the inlet port can produce a continuous flow of secondary fluid
appli-multiplicateur (m) à action
continue
Multiplicateur dans lequel tion continue du fluide primaire à l’orifice d’entrée permet un écoule-ment continu du fluide secondaire
l’applica-kontinuierlich wirkender
Übersetzer (m)
Übersetzer, bei dem das am gang dauernd anstehende Primär-fluid einen kontinuierlichen Strom des Sekundärfluids erzeugt
Flow rate that performs a control function
valve operator (deprecated)
Device that provides an input signal
to a component (e.g lever, noid)
sole-mécanisme (m) de commande
Dispositif qui fournit un signal rée à un composant (par exemple, levier, solénọde)
d’ent-Betätigungseinrichtung (f)
Einrichtung, die ein Bauteil mit einem Eingangssignal versorgt (z.B Hebel, Magnet)
Pressure at a control port used to perform a control function
pression (f) de commande
Pression à un orifice de commande utilisée pour réaliser une fonction de commande
Steuerdruck (m)
Druck an einem Steueranschluß, um eine Steuerfunktion auszuführen
Electrical signal or fluid pressure applied to a control mechanism
signal (m) de commande
Trang 379.1.4 - done control system
Means whereby the fluid power system is controlled, linking that system to the operator and to control signal sources, if any
système (m) de commande
Moyens par lesquels un système de transmissions hydrauliques ou pneu-matiques est commandée, assurant
la liaison entre le système et teur, et lorsqu’elles existent avec les sources de signal de commande
l’opéra-Steuerung (f) und Regelung (f)
Vorgänge, bei denen die Anlage durch die Verbindung mit dem Bediener und den Signalgebern, sofern vorhanden, gesteuert oder geregelt wird
Volume of fluid required to perform a control function, including that of the pilot line
volume (m) de commande
Volume de fluide nécessaire à la réalisation d’une fonction de com-mande, incluant celui de la canalisa-tion de commande
Steuervolumen (n)
Erforderliches Volumen des mediums, einschließlich der Steuer-leitung, um eine Steuerfunktion auszuführen
Valve which maintains pressure to prevent a load from falling or over-running
Ventil, das einen Druck aufrecht erhält, um das Fallen einer Last zu verhindern
(pref.); swaged hose
connector (pref.);
crimped hose fitting (sec.);
swaged hose fitting (sec.)
Hose connector attached to the hose
by permanent deformation of one end of the connector
raccord (m) de flexible serti;
raccord (m) de flexible
estampé
Connecteur de flexible rendu daire du flexible par déformation per-manente d’une extrémité du connecteur
soli-Preßarmatur (f)
Schlaucharmatur, die durch bende Verformung eines Armaturen-teils mit dem Schlauch verbunden wird
Ratio of the absolute downstream pressure to the absolute upstream pressure from a restriction in a pneu-matic component, at which the flow becomes sonic
rapport (m) de pressions
critiques (P)
Valeur du rapport de la pression absolue amont et aval dans un com-posant pneumatique, auquel l’écou-lement devient sonique
kritisches Druckverhältnis (n)
(P)
Verhältnis zwischen Absolutdruck stromaufwärts und Absolutdruck stromabwärts in einem Pneumatik-bauteil, bei dem der Volumenstrom Schallgeschwindigkeit erreicht
Numerical reference that indicates whether the flow will be laminar or turbulent for a given set of conditi-ons
nombre (m) de Reynolds
critique
Référence numérique indiquant si
un écoulement est soit laminaire soit turbulent pour un jeu de conditions données
kritische Reynoldszahl (f)
Numerische Bezugsgröße, die anzeigt, ob die Strömung, unter defi-nierten Bedingungen, laminar oder turbulent ist
Connector in the form of a cross
Trang 38NOTE – It is used to dissipate high pressure surges associated with some hydraulic motor or cylinder applications.
clapet (m) de décharge de
pression double (H)
Distributeur constitué de deux pets de décharge de pression installés dans un corps commun, de manière que l’écoulement puisse se faire dans deux directions
cla-NOTE – Utilisé pour dissiper des sauts de haute pression dans des moteurs hydrauliques ou des appli-cations des vérins
Druckbegrenzungsventil (n)
für gegenseitige Abspritzung (H)
Bauart eines zungsventils, um Volumenstrom in zwei Richtungen zu gestatten.ANMERKUNG: Es wird eingesetzt,
Doppel-Druckbegren-um hohe Druckstöße, die bei chen Hydromotor- oder Hydrozylin-deranwendungen auftreten können,
man-zu vermeiden
Cylinder with a cushioning device
amortissement (m)
Moyens fixes ou réglables grâce auxquels un élément mobile est décéléré lorsqu’il approche de la fin
damping pressure (sec.)
Pressure generated to decelerate the total moving mass
single preferred term)
Ring designed, on tightening a nector’s nut, to seal a connection and secure the connector onto the tube, by penetrating or deforming a tube’s outside diameter surface
con-virole (f); bague (f) coupante;
olive (f) (pas de terme
préférentiel)
Bague conçue sur la base d’un rage d’écrou, pour assurer l’étan-chéité d’une connexion et sa fixation sur un tube, par pénétration ou déformation de la surface du diamètre extérieur du tube
ser-Schneidring (m)
Ring, mit dem durch Anziehen einer Überwurfmutter, eine Verbindung abgedichtet und das Anschlußstück
am Rohr gesichert wird Dies geschieht durch Eindringen des Rin-ges in die Rohroberfläche oder Ver-formung der Rohroberfläche
cycle
One complete set of events or tions, which repeats in an identical, i.e cyclic manner
condi-cycle (m)
Jeu complet d’évènements qui se répètent à l’identique, c’est-à-dire de manière cyclique
Zyklus (m)
Ein vollständige Folge von sen oder Bedingungen, die sich peri-odisch wiederholen
Ereignis-2.1.9 and ISO
Conditions in which the values of the relevant factors vary in a cyclical manner
conditions (f) cycliques
stabilisées
Conditions dans lesquelles les valeurs des facteurs significatifs varient de façon cyclique
zyklisch stabilisierte
Bedingungen (f)
Einsatzbedingungen, unter denen die entsprechenden Kenngrößen periodisch variieren
Value of the difference between the upper cyclic test pressure and lower cyclic test pressure during a fatigue test
NOTE – See also lower cyclic test
pressure and upper cyclic test sure.
pres-pression (f) d’essai cyclique
Valeur de la différence entre la sion supérieure cyclique d’essai et la pression inférieure cyclique d’essai dans un essai de fatigue
pres-NOTE – Voir également pression
inférieure cyclique d’essai et sion supérieure cyclique d’essai.
pres-Druckschwankungsbreite (f)
Wert der Differenz zwischen dem oberen und dem unteren Schwell-druck währed einer Ermüdungsprü-fung
ANMERKUNG: Siehe auch Unterer
Schwelldruck und Oberer druck.
Method for securing a cylinder using
a bracket(s) of angular construction
fixation (f) orientable d’un
vérin
Dispositif destiné à maintenir en position un vérin, en utilisant des crochets ou un ensemble incliné
Zylinderwinkelbefestigung (f)
Zylinderbefestigung mit einem oder mehreren Winkelstücken
Trang 39N 38 - done cylinder body
Hollow pressure-containing element
in which the cylinder piston travels
corps (m) de vérin
Élément creux contenant la sion, dans laquelle se meut le piston d’un vérin
pres-Zylinderrohr (n); gehäuse (n)
Zylinder-Hohles druckfestes Teil, in dem sich der Kolben bewegt
Internal diameter of the cylinder body
cylinder rear end (sec.);
cylinder non-rod end (sec.)
That end of the cylinder where there
is no piston rod
Symbol with indication of cap and rod end
fond (m) de vérin (préf.);
arrière (m) d’un vérin (sec.);
extrémité (f) d’un vérin ne comprenant pas la tige (sec.)
Extrémité du vérin ne comprenant pas la tigue du piston
Dessin
Zylinderbodenseite (f)
Das Ende des Zylinders, an dem keine Kolbenstange austritt.Skizze
Mounting by means of a U-shaped mounting device through which a pin
or bolt passes, to make a cylinder pivot mounting
Dessin
Zylinder-Gabelbefestigung (f)
U-förmiges Befestigungsteil, das eine Lasche aufnehmen kann und durch den ein Stift oder Bolzen gesteckt wird, um eine Dreh-/Schwenkverbindung herzustellen
Skizze
Control mechanism that uses a cylinder
commande (f) par vérin
Mécanisme de commande réalisé à l’aide d’un vérin
Zylinderbetätigung (f)
Betätigungseinrichtung, bei der ein Zylinder das betätigende Element ist
Distance between the point at which cushioning begins and the end of the stroke
See cylinder outstroke.
course (f) d’extension d’un
vérin
Voir course de sortie du piston
Siehe Zylinder-Vorhub.
See cylinder outstroke force
cylinder pin mounting (sec.)
Mounting by means of a projection
to the cylinder construction through which a pin or bolt passes to make a cylinder pivot mounting
Drawing
fixation (f) par oreilles d’un vérin (préf.); fixation (f) par axe d’un vérin (sec.)
Fixation consistant en un ment à l’arrière du vérin pour per-mettre, grâce à un axe traversant, une liaison à angles droits avec l’axe
Zylinderkon-Skizze
Force generated by pressure acting
on a cylinder piston area
force (f) d’un vérin
Force générée par l’action de la pression sur la surface du piston d’un vérin
Zylinderkraft (f)
Kraft, die durch den auf die fläche des Zylinders wirkenden Druck erzeugt wird
Trang 40done cylinder front end
See cylinder rod end.
face (f) avant d’un vérin
See cylinder rod end.
tête (f) d’un vérin
cylinder retract stroke (sec.)
Movement whereby a piston rod retracts into the cylinder body In the case of a through-rod or rodless cylinder, the movement whereby the cylinder returns to its initial postion
course (f) de rentrée du piston d’un vérin (préf.); rétraction (f)
du piston d’un vérin (sec.)
Mouvement par lequel une tige de piston rentre dans le corps du vérin
Dans le cas d’une tige traversante
ou d’un vérin sans tige, c’est le vement par lequel le vérin retourne à
mou-sa position initiale
Zylinder-Rückhub (m) (pref.); Zylinder-Eifahrhub (m) (sec.)
Bewegung, bei der eine stange in das Zylinderrohr/-gehäuse zurückfährt Bewegung, bei der, bei Zylindern mit durchgehender Kol-benstange oder bei kolbenstangen-losen Zylindern, der Zylinder in seine Ausgangsstellung zurückfährt
Volumen für einen vollen Rückhub
cylinder retract force (sec.)
Force generated by the cylinder during its instroke
force (f) en rentrée de tige
Time taken for the cylinder piston to instroke
temps (m) de course de
rentrée du piston d’un vérin
Temps mis par le piston du vérin pour rentrer
Zylinderrückhubzeit (f)
Zeit für einen vollen Rückhub des Zylinderkolbens
See cylinder cap end.
extrémité (f) sans tige d’un
vérin
Voir fond de vérin.
Siehe Zylinderbodenseite.
(pref.); cylinder neck
mounting (deprecated)
Mounting by means of a threaded projection coaxial with the cylinder axis at the rod end
fixation (f) par nez d’un vérin
Fixation par un prolongement fileté concentrique à l’axe du vérin et du côté tige
Gewindebefestigung (f), vorn
Befestigung an zentrischem deansatz auf der Kolbenstangen-seite
cylinder extend stroke (sec.)
Movement whereby a piston rod emerges from the cylinder body In the case of a through-rod or rodless cylinder, the movement away from the cylinder’s initial position
course (f) de sortie du piston d’un vérin (préf.); course (f)
d’extension du piston d’un
vérin (sec.)
Mouvement par lequel une tige de piston sort du corps d’un vérin Dans
le cas d’un vérin à tige traversante
ou d’un vérin sans tige, c’est le vement éloignant le vérin de sa posi-tion initiale
mou-Zylinder-Vorhub (m)
Bewegung, bei der eine Kolbenstange aus dem Zylinderrohr/-gehäuse ausfährt Bewegung, bei der, bei Zylindern mit
durchgehender Kolbenstange oder bei kolbenstangenlosen Zylindern, der Zylinder von seiner
Ausgangsstellung wegfährt
(pref.), cylinder extend force (sec.)
Force generated by the cylinder during its outstroke
force (f) en sortie de tige d’un
sortie de tige d’un vérin
Cylindrée correspondant à une course de sortie complète du piston
du vérin
Zylindervorhubvolumen (n)
Volumen für einen vollen Vorhub des Zylinderkolbens