1. Trang chủ
  2. » Khoa Học Tự Nhiên

the differential geometry of parametric primitives

14 349 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề The Differential Geometry of Parametric Primitives
Tác giả Ken Turkowski
Trường học Apple Computer, Inc.
Chuyên ngành Media Technologies: Graphics Software
Thể loại Báo cáo kỹ thuật
Năm xuất bản 1990
Thành phố Apple
Định dạng
Số trang 14
Dung lượng 51,32 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Ken Turkowski Media Technologies: Graphics Software Advanced Technology Group Apple Computer, Inc.. Draft Friday, May 18, 1990 Abstract: We derive the expressions for first and second de

Trang 1

Ken Turkowski Media Technologies: Graphics Software Advanced Technology Group Apple Computer, Inc.

(Draft Friday, May 18, 1990)

Abstract: We derive the expressions for first and second

derivatives, normal, metric matrix and curvature matrix for

spheres, cones, cylinders, and tori

26 January 1990

Apple Technical Report No KT-23

Trang 2

The Differential Geometry of Parametric Primitives

Ken Turkowski

26 January 1990

Differential Properties of Parametric Surfaces

A parametric surface is a function:

where

is a point in affine 3-space, and

is a point in affine 2-space

The Jacobian matrix is a matrix of partial derivatives that relate changes in u and v to changes in

x, y, and z:

The Hessian is a tensor of second partial derivatives:

2(x,y,z)

∂(u,v)∂(u,v) =

∂2x

∂u2

∂2y

∂u2

∂2z

∂u2





∂2x

∂u∂v

∂2y

∂u∂v

∂2z

∂u∂v





∂2 x

∂v∂u

∂2 y

∂v∂u

∂2 z

∂v∂u





∂2 x

∂v2

∂2 y

∂v2

∂2 z

∂v2





=

∂2x

∂u2

∂2x

∂u∂v

∂2x

∂v∂u

∂2x

∂v2

J= ∂(x,y,z)

∂( )u,v =

∂x

∂u

∂ y

∂u

∂z

∂u

∂x

∂v

∂ y

∂v

∂z

∂v

=

x

∂u

x

∂v

u=[u v]

x=[x y z]

x=F u( )

Trang 3

and establishes a metric of differential length:

so that the arc length of a curve segment, is given by:

The differential surface area enclosed by the differential parallelogram is approximately:

so that the area of a region of the surface corresponding to a region R in the u-v plane is:

The second fundamental matrix measures normal curvature, and is given by:

The normal curvature is defined to be positive a curve u on the surface turns toward the positive direction of the surface normal by:

The deviation (in the normal direction) from the tangent plane of the surface, given a differential displacement of is:

˙˙

xn=uD˙ u˙t

u

κn= uD˙ u˙

t

˙

uG u˙t

D=nH=

n• ∂2x

∂u2 n• ∂2x

∂u∂v

n• ∂

2x

∂v∂u n•∂

2x

∂v2

S= ( )G

R

δS≈( )G 12δuδv

δu,δv

s= ds

dt

t0

t1

t0

t1

t0

t1

∫ dt= t(uG˙ u˙t)

0

t1

1 2 dt

u=u t( ), t0<t<t1

dx

( )2

=( )du G du( )t

Trang 4

If the parametrization of the surface is transformed by the equations:

then the chain rule yields:

or

where

is the new Jacobian matrix of the surface with respect to the new parameters and , and

is the Jacobian matrix of the reparametrization

The new Hessian is given by

where

The new fundamental matrix is given by:

and the new curvature matrix is given by:

∂(u,v)

∂ ′u2

∂( )u,v

∂ ′u∂ ′v

∂(u,v)

∂ ′v∂ ′u

∂( )u,v

∂ ′v2

H =PHPT+QJ

P= ∂(u,v)

∂ ′(u,v′)=

∂u

∂ ′u

∂v

∂ ′u

∂u

∂ ′v

∂v

∂ ′v

′ v

′ u

J =∂(x,y,z)

∂ ′(u,v′)

∂(x,y,z)

∂ ′(u,v′) =

∂(u,v)

∂ ′(u,v′)

∂(x,y,z)

∂( )u,v

u = ′u u( ,v) and v′= ′v u( ,v)

Trang 5

Change of Coordinates

For simplicity, we have defined several primitives with unit size, located at the origin Related

to the reparametrization is the change of coordinates , with associated Jacobian:

When the change of coordinates is represented by the affine transformation:

the Jacobian is simply the submatrix:

Regardless, the Jacobian and Hessian transform as follows:

The normal is transformed as:

The denominator arises from the desire to have a unit normal.

The first and second fundamental matrices are then calculated as:

Not very pretty But certain types of transformations can be applied easily For a uniform scale with arbitrary translations,

r 0 0

0 r 0

0 0 r

=r I

D = ′H• ′n =( )HC •(nC−1 t)

nC−1 t

C−1nt

( )21

− 1nt

nC−1 t

C−1nt

( )12

nC−1 t

C−1nt

( )12

nC−1 t

C−1nt

( )12

G = ′J J′t=JCCtJt

− 1 t

nC−1 tC−1nt

( )21

J =JC, H′=HC

xx yx zx

xy yy zy

xz yz zz

xx yx zx

xy yy zy

xz yz zz

xo yo zo

C=∂ ′x

x =

∂ ′x

∂x

∂ ′y

∂x

∂ ′z

∂x

∂ ′x

∂y

∂ ′y

∂y

∂ ′z

∂y

∂ ′x

∂z

∂ ′y

∂z

∂ ′z

∂z

x = ′x x( )

Trang 6

so that

For rotations (and arbitrary translations), the Jacobian matrix C=R is orthogonal, so the inverse

is equal to the transpose, yielding:

Combining the two, we have the results for a transformation that includes translations, rotations and uniform scale:

or in terms of the composite matrix :

J =JC, H′=HC, n′= nC

C

( )13 , G′=( )C 23G, D′=( )C 13D

C=r R

J =rJR, H′=rHR, n′=nR, G′=r2G, D′=rD

J =JR, H′=HR, n′=nR, G′=G, D′=D

J =rJ, H′=rH, n′=n, G′=r2G, D′=r D

Trang 7

Given the spherical coordinates:

we have the Jacobian matrix:

the Hessian tensor:

the first fundamental form:

the normal:

and the second fundamental form:

2+y2

0 −r

r

y r

z r

2+y2

0

0 r2



∂2

x,y,z

∂ θ( ,φ)∂ θ( ,φ) =

x2+y2

xz

x2+y2 0

x2+y2

xz

x2+y2

0

∂(x,y,z)

∂ θ( ,φ) =

xz

x2+y2

yz

x2+y2 − x2+y2

x y z

[ ] =[rsinφ cosθ rsinφsinθ rcosφ]

Trang 8

Unit Sphere

Angle Parametrization

Given the unit spherical coordinates with , we parametrize the sphere:

This yields the Jacobian matrix:

the Hessian tensor:

the first fundamental form:

the normal:

and the second fundamental form:

Angle Parametrization

With the reparametrization , we have the Jacobian:

Applying the chain rule, we have:

0 π





θ =2πu,ϕ = πv

Dθφ = − x

2+y2

0 −1



n=[x y z]

Gθφ = x

2+ y2 0

0 1

Hθφ =

x2+y2

xz

x2+y2 0



x2+y2

xz

x2+y2

0

Jθφ=

xz

x2+y2

yz

x2+y2 − x2+y2

x y z

[ ] =[sinφcosθ sinφsinθ cosφ]

0≤ θ <2π, 0≤ ϕ < π

Trang 9

Changing coordinates to yield a sphere of arbitrary radius, we find that the expressions for the

Jacobian, the Hessian, and the metric matrix remain the same, because x, y, and z scale linearly with r The curvature matrix changes to:

Duv= −

4π2(x2+y2)

0 −π2r

Duv= −4π

2

x2+y2

0 −π2





Guv= 4π

2

x2+y2

0 π2

Huv=

4π2[−x −y 0] 2π − yz

x2 +y2

xz

x2+y2 0



2π − yz

x2+y2

xz

x2+ y2

0



Trang 10

Angle Parametrization

Given the unit conical parametrization:

we have the Jacobian matrix:

the Hessian tensor:

the first fundamental form:

the normal:

and the second fundamental form:

Unit Parametrization

For the parametrization:

we have:

2πy 2πx 0

x y z

[ ] =[rvcos2πu rvsin2πu vh]

Dθz= −

z

2 0

0 0

nθz= x

z 2

y

z 2 − 1

2





Gθz=

x2+y2 0

2+y2+z2

z2

=

z2 0

0 2



Hθz=

z

x

z 0

−y z

x

z 0

Jθz= −

y x 0 x

z

y

z 1



x y z

Trang 11

Duv= −

4π2 rz

1+h2

0

1+h2

h2x rz

h2y

rz −1





Guv=

4π2

x2+y2

2

x2+y2+z2

z2

Trang 12

Angle Parametrization

Given the cylindrical parametrization:

we have the Jacobian matrix:

the Hessian tensor:

the first fundamental form:

the normal:

and the second fundamental form:

Unit Parametrization

With the parametrization:

we have the Jacobian matrix:

the Hessian tensor:

Huv= −4π

2x −4π2y 0

0 0 0

Juv= −2πy 2πx 0





x y z

[ ] =[rcos2πu rsin2πu hv]

Dθφ = −1 0

0 0





n=[x y 0]

0 1





Hθφ = [−x −y 0] [0 0 0]

0 0 0

Jθφ= −y x 0

0 0 1





x y z

Trang 13

and the second fundamental form:

Duv= −4π

2r 0

0 0



r

y

r 0

Trang 14

Angle Parametrization

Given the torus parametrization:

we have the Jacobian matrix:

the Hessian tensor:

the first fundamental form:

the normal:

and the second fundamental form:

Dθφ = −x

2+y2

r 1− R

x2+y2



2−x2−y2+z2−r2

1− R

x2+y2

1− R

x2+y2 r

z r

Gθφ = x

2+ y2

0

0 r2

Hθφ =

x2+y2 − xz

x2+y2 0



 yz

x2+y2 − xz

x2+y2

0



x2+y2



x2+y2



 −z



Jθφ=

x2+y2 − yz

x2+y2 x2+y2−R

x y z

[ ] =[(R+rcosφ)cosθ (R+rcosφ)sinθ rsinφ]

Ngày đăng: 27/03/2014, 11:53

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN