1. Trang chủ
  2. » Tất cả

De cuong hk 1 toan 10 thpt phuc da

13 10 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề cương ôn tập HK1 – Toán lớp 10
Trường học Trường THPT Đa Phúc
Chuyên ngành Toán
Thể loại Đề cương
Năm xuất bản 2019 - 2020
Thành phố Hà Nội
Định dạng
Số trang 13
Dung lượng 1 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Hàm số bậc nhất Tìm hàm số bậc nhất, sử dụng điều kiện song song, vuông góc của các đường thẳng,… 4.. Hàm số bậc hai Tìm đỉnh, trục đối xứng, bảng biến thiên, vẽ đồ thị, hàm bậc hai chứa

Trang 1

THPT ĐA PHÚC

Tổ Toán - Tin ĐỀ CƯƠNG ÔN TẬP HỌC KÌ I NĂM HỌC 2019 - 2020 MÔN: TOÁN LỚP 10

A NỘI DỤNG ÔN TẬP

I ĐẠI SỐ

Chương 1: Mệnh đề - Tập hợp

1 Tập hợp và các phép toán trên các tập hợp

2 Các tập hợp con của tập hợp số thực

Chương 2: Hàm số bậc nhất – Hàm số bậc hai

1 Tập xác định của hàm số

2 Tính chẵn – lẻ của hàm số

3 Hàm số bậc nhất (Tìm hàm số bậc nhất, sử dụng điều kiện song song, vuông góc của các đường thẳng,…)

4 Hàm số bậc hai (Tìm đỉnh, trục đối xứng, bảng biến thiên, vẽ đồ thị, hàm bậc hai chứa dấu giá trị tuyệt đối,…)

Chương 3: Phương trình – hệ phương trình

1 Điều kiện xác định của phương trình

2 Phương trình tương đương; Phương trình hệ quả; Phép biến đổi tương đương

3 Phương trình bậc nhất; Phương trình bậc hai; Định lý Viéte

4 Phương trình quy về bậc nhất – bậc hai (Chứa ẩn ở mẫu, bậc ba, bậc 4 trùng phương, vô tỷ)

5 Hệ phương trình (Phương pháp thế, cộng đại số; Hệ đối xứng)

II HÌNH HỌC

Chương 1: Véc tơ

1 Tổng và hiệu của hai véc tơ (Chứng minh đẳng thức véc tơ; tính độ dài véc tơ tổng – hiệu)

2 Tích của véc tơ với một số (Chứng minh đẳng thức véc tơ; Phân tích một véc tơ theo hai véc tơ không cùng phương; Tính độ dài)

3 Hệ trục tọa độ (Sử dụng điều kiện hai véc tơ bằng nhau; hai véc tơ cùng phương; Độ dài của véc tơ; Công thức tọa độ của trung điểm, trọng tâm)

Chương 2: Tích vô hướng và ứng dụng

1 Giá trị lượng giác góc 0    180  (Các hệ thức cơ bản, tính chất các góc bù nhau, đối nhau)

2 Tích vô hướng (Sử dụng biểu thức độ dài của tích vô hướng; Sử dụng biểu thức tọa độ của tích vô hướng, tìm góc giữa hai đường thẳng; giữa hai véc tơ)

B BÀI TẬP ÔN TẬP

‡‡‡‡‡‡‡‡

I PHẦN TỰ LUẬN

†ĐẠI SỐ†

Chương 2 Hàm số - hàm số bậc nhất – hàm số bậc hai

1 Hàm số

Bài 1 Tìm tập xác định của các hàm số sau

a)

 21 1

y

yx   x x  Bài 2 Xét tính chẵn lẻ của các hàm số sau

a) y x2 4 4

x

y

  

  

2 Hàm số bậc hai

Bài 3 Xét sự biến thiên và vẽ đồ thị các hàm số

Trang 2

Bài 4 Tìm parabol 2

yaxx  , biết rằng parabol đi qua điểm A 1; 5 Bài 5 Tìm parabol   2

:

P yxbxc biết rằng  P có đỉnh I  1; 4

Bài 6 Xác định parabol   2  

P yaxbxc a  biết rằng c  2 và  P đi qua điểm B3; 4  

và có trục đối xứng là 3

2

x   Bài 7 Cho parabol   2  

P yaxbxa  Tìm các hệ số a b, biết hàm số đạt giá trị nhỏ nhất 1

2 khi x  1

CHƯƠNG 3 Phương trình bậc nhất – bậc hai và Phương trình quy về phương trình bậc nhất –

bậc hai

1 Phương trình bậc nhất – bậc hai

Bài 8 Tìm m để phương trình 2

1 0

mx  x m   a) Có nghiệm kép

b) Có hai nghiệm phân biệt

c) Có hai nghiệm dương phân biệt

d) Có hai nghiệm trái dấu

e) Có hai nghiệm cùng dấu

f) Có hai nghiệm phân biệt thỏa mãn 2 2

1 2 3 1 2

xxx x Bài 9 Cho phương trình 2

0

xbx  c có hai nghiệm thực dương x x1, 2 thoả mãn x1 x2 1. Chứng minh rằng 1.

4

c

2 Phương trình quy về phương trình bậc nhất và phương trình bậc hai

Phương trình chứa ẩn ở mẫu – Phương trình bậc cao Bài 10 Giải các phương trình sau

 

c) 3 2

xxx  

d) 4 2

xxx  

Bài 11 Tìm m để phương trình 3   2  2  2

xmxmmxm   (*) có ba nghiệm dương phân biệt

Phương trình vô tỷ (chứa căn thức) Bài 12 Giải các phương trình sau

a) 2

xx   x

b) x  2x   5 4

c) 2 2

xx  

(x  5)(2 x)  3 x  3x

(x  3) 2x   1 x  x 3

4x   1 4x  6x   1 0

Bài 13

a) Tìm m để phương trình 2

xmx   x  có hai nghiệm phân biệt

b) Tìm m để phương trình  2

2

2x 1 mx  x 1 có nghiệm

Trang 3

c) Tìm m để phương trình 4 2

3 x  1 m x  1 2 x 1 có nghiệm

†HÌNH HỌC†

Bài 14 Cho 4 điểm A, B, C, D Gọi I, J lần lượt là trung điểm của AB và CD Chứng minh

a) Nếu A B CD thì A C BD

b) A CBD A DBC  2IJ

c) Gọi G là trung điểm của IJ Chứng minh GAGBGCGD  0

Bài 15 Cho tam giác ABC Gọi M là trung điểm của AB, D là trung điểm của BC, N là điểm thuộc

AC sao cho CN  2NA K là trung điểm của MN Phân tích vectơ

a) A K



theo A B A C,

 

A K  A B A C) b) K D



theo A B A C,



KD  A B A C)

Bài 16 Cho (2; 0), 1;1 , (4; 6)

2

a) Tìm toạ độ của vectơ d 2a3b5c

b) Tìm 2 số m, n sao cho ma bnc 0

c) Biểu diễn vectơ c t heo ,a b 

Bài 17 Cho tam giác ABC có A(1; 2), B(–2; 6), C(9; 8)

a) Tính A B A C.

 

Chứng minh tam giác ABC vuông tại A

b) Tính chu vi, diện tích tam giác ABC

c) Tìm toạ độ điểm M trên Oy để B, M, A thẳng hàng

d) Tìm toạ độ điểm D để ABDC là hình chữ nhật

e) Tìm toạ độ điểm I thoả IA 2IBIC  0

f) Phân tích vectơ A I



theo A B A C,

 

II PHẦN TRẮC NGHIỆM (60 câu Đại số - 40 câu Hình học)

1 Mệnh đề tập hợp

Câu 1 Sử dụng các kí hiệu khoảng, đoạn để viết tập hợp A x   4  x 9

A A     4;9  B A 4;9  C A    4;9  D A  4;9

Câu 2 Cho A  1; 4 ;  B  2;6 ;C  1;2 Tìm A B C :

A 0; 4  B  5; . C  ;1  D 

Câu 3 Cho hai tập A x   x    3 4 2x, B x   5x   3 4x  1

Tất cả các số tự nhiên thuộc cả hai tập AB

Câu 4 Cho các tập hợp A  ( 2;10),B ( ;m m 2) Tìm m để tập AB là một khoảng

A  4 m 10 B  4 m 2 C  4 m 10 D  4 m 2

Câu 5 Cho các tập hợpA (4;14),B (m 3; )m Tìm m để tập AB là tập rỗng

17

m

m

 

 

4 17

m m

 

 

2 Hàm số bậc nhất

Câu 6 Phương trình đường thẳng đi qua hai điểm A   3;1 ,B  2;6 là

Câu 7 Phương trình đường thẳng đi qua hai điểm A   5;2 ,B  3;2 là

Trang 4

A y 5 B y  3 C y 5x 2 D y 2

Câu 8 Cho hai đường thẳng  d1 và  d2 lần lượt có phương trình mx m  1y  2m  2 0

và 3mx 3m  1y  5m   4 0 Khi 1

3

m  thì  d1 và  d2

A Song song nhau B cắt nhau tại 1 điểm C vuông góc nhau D trùng nhau

Câu 9 Cho hàm số y  2x  4 Bảng biến thiên nào sau đây là bảng biến thiên của hàm số đã cho ?

9m  4 xn  9 yn  3 3m  2 Khi đó

3

m   và n  3 thì PT đã cho là phương trình của đường thẳng song song với trục Ox

3

m   và n  3 thì PT đã cho là phương trình của đường thẳng song song với trục Ox

3

m  và n  3 thì PT đã cho là phương trình của đường thẳng song song với trục Ox

4

m   và n  2 thì PT đã cho là phương trình của đường thẳng song song với Ox

3 Hàm số bậc hai

Câu 11 Cho hàm số 2

yxx  Trong các mệnh để sau đây, tìm mệnh đề đúng?

A y tăng trên khoảng 0;  B y giảm trên khoảng  ;2

C Đồ thị của y có đỉnh I  1; 0 D y tăng trên khoảng 1; 

Câu 12 Hàm số 2

yxx  Khi đó

A Hàm số đồng biến trên   ; 2 và nghịch biến trên   2; 

B Hàm số nghịch biến trên   ; 2 và đồng biến trên   2; 

C Hàm số đồng biến trên   ; 1 và nghịch biến trên   1; 

D Hàm số nghịch biến trên   ; 1 và đồng biến trên   1; 

Câu 13 Cho parabol   2

P y   xx  Khẳng định đúng nhất trong các khẳng định sau là

A  P có đỉnh I  1;2 B  P có trục đối xứng x 1

C  P cắt trục tung tại điểm A 0; 1  D Cả A, B, C, đều đúng

Câu 14 Cho Parabol   2

P yaxbx  biết rẳng parabol đó cắt trục hoành tại x1 1 và

2 2

x  Parabol đó là

Trang 5

A 1 2

2 2

yx  x B 2

y   x x  C 2

yxx  Câu 15 Cho parabol   2

P yaxbx  biết rằng parabol đó đi qua hai điểm A 1; 5 và

 2; 8

B  Parabol đó là

y   x x  C 2

yx  x

Câu 16 Cho Parabol   2

P yaxbx  biết rằng Parabol đó đi qua hai điểm A 1; 4 và

 1;2

B  Parabol đó là

y   x x  D 2

yx  x

Câu 17 Biết Parabol 2

yaxbxc đi qua góc tọa độ và có đỉnh I   1; 3 Giá trị của a,b,c là

A a  3,b6,c  0 B a  3,b6,c 0 C a  3,b 6,c 0 D Một đáp số khác Câu 18 Cho bảng biến thiên của hàm số 2 5

3

yxx  là

Câu 19 Hỏi có bao nhiêu giá trị m nguyên trong nửa khoảng 0;2017  để phương trình

2

xx  m  có hai nghiệm phân biệt?

Câu 20 Tìm m để phương trình 2

xxm  có hai nghiệm phân biệt thuộc khoảng  0; 3

A 3 m  4 B 3 m  4 C   4 m   3 D   4 m   3

4 Hàm số và các bài toán

Câu 21 Tìm tập xác định D của hàm số 2 2 1

x y

A D  1; 4  B D   \ 1; 4   C D   \ 1; 4   D D 

Câu 22 Tìm tập xác định D của hàm số y  6  3xx  1.

A D  1;2 B D     1;2  C D     1; 3  D D    1;2  Câu 23 Tìm tập xác định D của hàm số 3 2 6 .

4 3

y

x

 

A D 2 4;

3 3

2 3

3 4

3

  

Câu 24 Tìm tập xác định D của hàm số .

6

x y

 

Trang 6

A D  0; . B D  0;   \ 9 C D  9 D D 

Câu 25 Tìm tất cả các giá trị thực của tham số m để hàm số 1 2

2

x

  xác định trên khoảng  1; 3

A Không có giá trị m thỏa mãn B m 2

Câu 26 Tìm tất cả các giá trị thực của tham số m để hàm số

2 1

mx y

x m

   xác định trên

 0;1

2

  

  B m     ; 1   2 C m   ;1  3 D m   ;1  2 Câu 27 Cho hàm số f x  x  2 Khẳng định nào sau đây là đúng

A f x  là hàm số lẻ B f x  là hàm số chẵn

C f x  là hàm số vừa chẵn, vừa lẻ D f x  là hàm số không chẵn, không lẻ Câu 28 Trong các hàm số nào sau đây, hàm số nào là hàm số lẻ?

A 2018

2017.

C y  3  x 3 x. D yx    3 x 3

yx   xxyx x  2 ,

| 2015 | | 2015 |

| 2015 | | 2015 |

y

   có bao nhiêu hàm số lẻ?

Câu 30 Biết rằng khi mm0 thì hàm số   3  2  2

f xxmxxm  là hàm số lẻ Mệnh

đề nào sau đây đúng?

2

2

2

  D m0  3; .

5 Phương trình bậc nhất – bậc hai và phương trình quy về bậc nhất – bậc hai

Câu 31 Điều kiện xác định của phương trình 3x   2 4  3x  1 là

A 4;

3



3 3

3 3

3 3

  Câu 32 Chỉ ra khẳng định sai?

A x  2  3   2 x   x 2 0 B x   3 2   x 3 4

2

x x

x

Câu 33 Chỉ ra khẳng định sai?

A x   1 2 1 x   x 1 0 B xx    2 1 x  2  x 1

C x  1   x 1 D x    2 x 1   2 2

Câu 34 Chỉ ra khẳng định sai?

A x  2  3   2 x   x 2 0 B x   3 2   x 3 4

1

x    x 1 Câu 35 Khi giải phương trình 2

3x  1 2x 1 1 , ta tiến hành theo các bước sau

Trang 7

Bước 1 Bình phương hai vế của phương trình  1 ta được

 2

2

3x 1 2x 1   2 

Bước 2 Khai triển và rút gọn  2 ta được x2 4x   0  x 0 hayx  –4

Bước 3 Khi x  0, ta có 2

3x  1 0 Khix  4, ta có 2

3x  1 0 Vậy tập nghiệm của phương trình là  0; –4

Cách giải trên đúng hay sai? Nếu sai thì sai ở bước nào?

A Đúng B Sai ở bước1 C Sai ở bước 2 D Sai ở bước 3 Câu 36 Phương trình 2

0

axbx  c có nghiệm duy nhất khi và chỉ khi

0

a

 

 

 hoặc

0 0

a b

 

 



0

a

 

 

 Câu 37 Phương trình m2 – 4m  3xm2 – 3m  2 có nghiệm duy nhất khi

A m 1 B.m  3 C.m 1 và m  3 D.m 1 và m 3 Câu 38 Tìmm để phương trình  2   

m xm m  có tập nghiệm là 

A m 2 B.m  2 C.m  0 D.m  2 và m 2

mx   m xm vô nghiệm khi

A m 2 hoặc m 3 B.m 2 C.m 1 D.m 3

Câu 40 Cho phương trình    2 

xxmx   Phương trình có ba nghiệm phân biệt khi

4

4

m   Câu 41 Để hai đồ thị 2

y   x x  và 2

yxm có hai điểm chung thì

A m  3, 5 B.m  3, 5 C.m  3, 5 D.m  3, 5

Câu 42 Tìm điều kiện của m để phương trình x2 4mxm2  0   có 2 nghiệm âm phân biệt

A m  0 B.m  0 C.m  0 D.m  0

Câu 43 Nếu biết các nghiệm của phương trình x2      px   q  0 là lập phương các nghiệm của phương trình 2

0

xmx  n Thế thì

3

3

pmmn D Một đáp số khác Câu 44 Cho phương trình 2  

– 2 – 1 – 1 0

x a x  Khi tổng các nghiệm và tổng bình phương các nghiệm của phương trình bằng nhau thì giá trị của tham số a bằng

A 1

2

2 –

a  hay a  –1

C 3

2

2 –

a  hay a  –2 Câu 45 Cho 2  

2 2

x x

  1 Với m là bao nhiêu thì  1 có nghiệm duy nhất

A m 1 B m 1 C.m 1 D.m 1

Câu 46 Với giá trị nào của tham sốathì phương trình  2 

xxx  a có hai nghiệm phân biệt

Trang 8

Câu 47 Cho phương trình  2    

xx   m xx  mm  Tìm mđể phương trình có nghiệm

Câu 48 Tìm tất cả giá trị của m để phương trình 2 2 2

2

x mx

x

 

 có nghiệm dương

A 0 m  2 6  4 B 1m  3 C 4  2 6 m  1 D 2 6   4 m  1 Câu 49 Định m để phương trình 2

2

x x

4

4

3 2 1 2

m m

  



Câu 50 Định k để phương trình 2

2

x x

  có đúng hai nghiệm lớn hơn 1

Câu 51 Để hệ phương trình

.

x y P

  

 

 có nghiệm , điều kiện cần và đủ là

A S2 –P  0 B S2 –P 0 C.S2 – 4P 0 D.S2 – 4P 0

Câu 52 Hệ phương trình    

A 1 13;

2 2

2 2

Câu 53 Cho hệ phương trình  

  41 2

 Để hệ này vô nghiệm, điều kiện thích hợp cho tham số m

C m  1 hay 1

2

2

m   hay m 3

Câu 54 Hệ phương trình 2 2 1

5

x y

  

  

 có bao nhiêu nghiệm ?

Câu 55 Hệ phương trình

13

12

x y

x y



  



có nghiệm là

A 1; 1.

x   y  D Hệ vô nghiệm

6 Bất đẳng thức

Câu 56 Tìm mệnh đề đúng?

A  a  b ac  bc B a b 1 1.

  

C ab và c  d acbd D a   b  acbc c,  0

Câu 57 Suy luận nào sau đây đúng?

Trang 9

A a b

c d

 

 

a b

c d

 

 



a b

c d

C a b

c d

 

 

    a c b d D

0 0

a b

c d

  

  

 acbd Câu 58 Trong các tính chất sau, tính chất nào sai?

A a b

c d

 

 

    a c b d B

0 0

a b

c d

  

  



d c

 

C 0

0

a b

c d

  

  

a b

c d

 

 

    a c b d Câu 59 Tìm mệnh đề đúng trong các mệnh đề sau?

A ab 1 1

  B abacbc C a b

c d

 

 

 acbd D. Cả A, B, C đều sai Câu 60 Mệnh đề nào sau đây sai?

A a b

c d

 

 

    a c b d B

a b

c d

 

 

 acbd

C a b

c d

 

 

    a c b d D acbc a bc  0

7 Véc tơ

Câu 61 Hai véc tơ có cùng độ dài và ngược hướng gọi là

nhau

Câu 62 Hai véctơ bằng nhau khi hai véctơ đó có

A Cùng hướng và có độ dài bằng nhau B Song song và có độ dài bằng nhau

C Cùng phương và có độ dài bằng nhau D Thỏa mãn cả ba tính chất trên

Câu 63 Điều kiện nào sau đây không phải là điều kiện cần và đủ để G là trọng tâm của tam giác A BC , với M là trung điểm của BC

A MA MC  0 B A GBGCG  0

C A GGBGC  0 D GAGBGC  0

Câu 64 Cho tam giác A BC, trọng tâm là G Phát biểu nào là đúng?

A A BBC  A C B GA GB GC  0

C A BBC A C D GA GBGC 0

Câu 65 Cho tam giác đều A BC cạnh a Khi đó A BA C 

2

a

Câu 66 Gọi G là trọng tâm tam giác vuông A BC với cạnh huyền BC 12 Tổng hai vectơ

GBGC có độ dài bằng bao nhiêu ?

Câu 67 Cho hình bình hành A BCD tâm O Đẳng thức nào sau đây đúng ?

A A OBOOCDO  0 B A OBOCODO  0

C A OOBCODO  0 D OABOCODO  0

Trang 10

Câu 68 Cho ba lực F1 MA F , 2 MB F , 3 MC cùng tác động vào một vật tại điểm M và vật đứng yên Cho biết cường độ của F F1, 2

 

đều bằng 100N và  0

60

A MB  Khi đó cường độ lực của 3

F



Câu 69 Cho tam giác đều A BC cạnh a Gọi G là trọng tâm Khi đó giá trị A BGC là

A

3

3

3

3

a Câu 70 Hãy chọn kết quả đúng khi phân tích vectơ A M



theo hai véctơ A B



A C



của tam giác A BC với trung tuyến A M

A A M A BA C B.A M 2A B 3A C

2

A M  A BA C D 1( )

3

A M A BA C Câu 71 Cho hình bình hành A BCD Đẳng thức nào sau đây đúng?

A A CA D CD B.A CBD  2CD C A CBC A B D A CBD  2BC Câu 72 Nếu G là trọng tam giác A BC thì đẳng thức nào sau đây đúng

A

2

A B A C

 



3

A B A C

 



2

A B A C

3

A B A C

A G  Câu 73 Cho tam giác A BC có trung tuyến BM và trọng tâm G Khi đó BG 

A BABC B 1 

2 BABC C 1

3BABC D 1 

3 BABC Câu 74 Cho đoạn thẳng A B và điểm I thỏa mãn IB 3IA  0 Hình nào sau đây mô tả đúng giả thiết này?

Câu 75 Cho tam giác A BCM thuộc cạnh BC sao cho CM  2MBI là trung điểm của

A B Đẳng thức nào sau đây đúng?

IM  A B A C

IM  A B A C D 1 1

IM  A B A C Câu 76 Cho hai vectơ a và b không cùng phương Hai vectơ nào sau đây cùng phương?

A 1

2a b

   và a 2b B 1

2a b và 1

2a b

Ngày đăng: 04/02/2023, 11:55

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm