PHÒNG GD&ĐT BÁ THƯỚC ĐỀ THI HỌC SINH GIỎI TOÁN 6 ĐỀ SỐ C©u 1 (3 ®iÓm) TÝnh a) A= 4 52 – 3 (24 – 9) b) B= ( 1) ( 1)2 ( 1)3 ( 1)4 ( 1)2019 ( 1)2020 c) C = 1 2 + 2 3 + 3 4 + + 99 100 C©u 2 (3 ®iÓm) T×m x[.]
Trang 1
ĐỀ THI HỌC SINH GIỎI TOÁN 6
ĐỀ SỐ
Câu 1: (3 điểm) Tính
a) A= 4 52 – 3 (24 – 9) b) B= (-1).(-1)2.(-1)3.(-1)4… (-1)2019.(-1)2020 c) C = 1.2 + 2.3 + 3.4 + + 99.100
Câu 2: (3 điểm) Tìm x biết
Câu 3: (5 điểm)
1) Cho: A = 1 - 2 + 3 - 4 + … + 99 - 100
a) Tính A
b) A có chia hết cho 2, cho 3, cho 5 không ?
c) A có bao nhiêu ớc tự nhiên? Bao nhiêu ớc nguyên?
2) Thay a, b bằng các chữ số thích hợp sao cho
3) Cho a là một số nguyên có dạng a = 3b + 7 (b Z) Hỏi a có thể nhận những giá trị nào trong các giá trị sau ? Tại sao ?
a = 11 ; a = 2002 ; a = 2003 ; a = 11570 ; a = 22789 ; a =
29563 ; a = 299537
Câu 4: (3 điểm)
a) Tìm số tự nhiên nhỏ nhất biết rằng số đó chia cho 9 d 5, chia cho 7 d 4 và chia cho 5 thì d 3
b) Cho A = 1 + 2012 + 20122 + 20123 + 20124 + + 201271 +
201272 và
B = 201273 - 1 So sánh A và B
Câu 5: (6 điểm)
Cho gúc bẹt xOy, trờn tia Ox lấy điểm A sao cho OA = 2 cm; trờn tia Oy lấy hai điểm M và B sao cho OM = 1 cm; OB = 4 cm
a Chứng tỏ: Điểm M nằm giữa hai điểm O và B; Điểm M là trung điểm của đoạn thẳng AB
b Từ O kẻ hai tia Ot và Oz sao cho tOy = 1300, zOy = 300 Tớnh số đo tOz (chưa học)
Trang 2
-HÕt -Hä tªn häc sinh: ……….……… SBD
PHÒNG GD&ĐT BÁ THƯỚC
Trêng THCS ThÞ trÊn Cµnh Nµng
HƯỚNG DẪN CHẤM THI HỌC SINH GIỎI CẤP TRƯỜNG
Năm học: 2011-2012
C©u 1:
(3
®iÓm)
a)A= 55
b) B=-1.1.(-1).1…(-1).1 = 1
c C = 1.2 + 2.3 + 3.4 + + 99.100
3.C = (1.2 + 2.3 + 3.4 + + 99.100).3
= 1.2.3 + 2.3.3 + 3.4.3 + + 99.100.3
= 1.2.3 +2.3.(4 - 1) + 3.4.(5 - 2) + + 99.100.(101 - 98)
= 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 - -
98.99.100 + 99.100.101
S = 99.100.101: 3 = 33 100 101 = 333300
1
1 1
C©u 2:
(3
®iÓm)
a) x= 25
b) x = 12 hoÆc x = - 26
1 1 1
C©u 3:
(5
®iÓm)
1)
a) A = - 50
3
c) A cã 6 íc tù nhiªn vµ cã 12 íc nguyªn
1 0,5 0,5
Trang 32) Ta có 45 = 9.5 mà (5; 9) = 1
Do
Nên b = 0 hoặc 5
TH1: b = 0 ta có số
Hay a + 20 9
Suy ra a = 7 ta có số
247680
TH2: b = 5 ta có số
Hay a + 25 9
Suy ra a = 2 ta có số
242685
hoặc a = 2; b =5
0,5
0,5
0,5
3) Số nguyên có dạng a = 3b + 7 (b Z) hay a là số
chia cho 3 d 1
Vậy a có thể nhận những giá trị nào trong các
giá trị sau
a = 2002; a = 22789 ; a = 29563
0,5
1
Câu 4:
(3
điểm)
a) Tìm số tự nhiên nhỏ nhất biết rằng số đó chia
cho 9 d 5, chia cho 7 d 4 và chia cho 5 thì d 3 Gọi số cần tìm là a
Ta có a chia cho 9 d 5
a = 9k + 5 (k N) 2a = 9k1 + 1 (2a- 1) 9
Ta có a chia cho 7 d 4
a = 7m + 4 (m N) 2a = 7m1 + 1 (2a- 1) 7
Ta có a chia cho 5 d 3
a = 5t + 3 (t N) 2a = 5t1 + 1 (2a- 1) 5 (2a- 1) 9; 7 và 5
Mà (9,7,5) = 1 và a là số tự nhiên nhỏ nhất
0,5
0,5 0,5
Trang 4z t
y
2a – 1 = BCNN(9,7,5) = 315 Vậy a = 158
b) Cho A = 1 + 2012 + 20122 + 20123 + 20124 + … + 201271 +
201272 và
B = 201273 - 1 So sánh A và B
Ta có 2012A = 2012 + 20122 + 20123 + 20124 + …
+ 201271 + 201273
Lấy 2012A – A = 201273 – 1
Vậy A = (201273 – 1) : 2011 < B = 201273 - 1
0,5
0,5
0,5 Câu 5:
(6
điểm)
Vẽ hình đúng
a)
Trên tia Oy ta có OM = 1 cm < OB = 4 cm
Vậy M là điểm nằm giữa O và B
Do M nằm giữa O và B ta có OM + MB = OB
MB = OB – OM =
4 – 1 = 3
Do A thuộc tia Ox M thuộc tia Oy nên O nằm giữa hai
điểm A và M suy ra OM + OA = MA
MA = 2 + 1 = 3 cm
Mặt khác do A, B nằm trên hai tia đối nhau, M lại
nằm giữa O và B nên suy ra M nằm giữa A và B
Vậy M là trung điểm của AB
b) TH1: Tia Ot và tia Oz trên cùng một nữa mặt
phẳng
0,5
0,5 0,5
0,5 0,5 0,5 1
Trang 5Do yOt = 1030 , yOz = 300 suy ra tia Oz nằm giữa
hai tia Ot và Oy Ta có tOz = tOy – yOz =
1300 – 300 = 1000
TH2: Tia Ot và tia Oz không nằm trên cùng một
nữa mặt phẳng bờ là xy
Suy ra tia Oy nằm giữa hai tia Ot và Oz
Ta có tOz = tOy – yOz = 1300 + 300 =
1600
(Học sinh không vẽ hình, hoặc vẽ hình sai không
tính điểm)
0,5
0,5 1
Ghi chú: - Thí sinh trình bày đúng nội dung bài làm cho 20
điểm.
- Nếu trình bày theo cách khác mà đúng vẫn cho điểm tối đa
- Điểm của toàn bài là tổng điểm thành phần và đợc làm
tròn số đến 0,5đ.