An Applicationof SoftComputing to RETS: Rheumatic Evaluation and Treatment System by OrientalRheumaticMedicin
Trang 1SIIg BMFsA(2oo6-i2-oi-o2)
BiomedicalSoft Cornputing and Human Seiences, VoL.11, No.1,pp.7-13.
Copyright @ 1995 Biomedecal Fuzzy Systems Assoeiatien
Evaluation and Treatment System by OrientalRheumatic Medicine
and Hoang Phuong NGUYEN""""Katsuari
KAMEI"*
*"Dept
clfrer usingjuzay iizferences, RE7S diagnoses the most suitable rheumatic state in which thepatient c\lpears
networks,77'om skitted OMpltysiciansand OM text books, RE7S givesan orientat prescriptionwritten in
suitabie herbswith recxsonabte amozints Finally,we clescribe evaluations and restrictions ofRE7:Sland
1 Introduction
accounts for 15% of all soft tissue diseases The most
rheumatism are physicalrnethods, anti-infiammatory
and oriental medicine (OM) Among them, OM isan
than western medicine and gives good treatment
results Besides, herbal prescriptionsare easy to find
and relatively cheap in comparison with western
OM isabout 50 %.
system such as RETS basedon knowledge from
skiiled OM physicianswiLl he]pmoderate evaluation
in rheumatic diagnoseswhich tend to besub.jective It
maintain and share their profound knowledge with
col]eagues and to assist medica] students or young
rural areas
Shiga-prefecture,
In the last recent decades, the advent of the
computer has greatly stimulated developments of ES
which perfbrms the roles of a specialist or carry out some works requiring specific expertise Therewere
applied, such as medicine [2-4], geology [6],
chemistry [7] and business [81.
symptoms The number of herbs for rheumatic
symptoms on patients, doctors diagnose and classify
states of rheumatism, then give corresponding herba]
1 shows the process ofdiagnosis and prescriptionof
rheumatic treatment by OM doctors Such a process
can be suitably assisted with an ES as shown in Fig 2
explanations, sample prescriptionsand training data.
Fuzzy Inference: Checks rules calculates weights and giyes properrheumatic state Inputs to
symptoms and ruEes, and one output that is themost
serious ofthe theumaticstate that the patient has.
Neural Network: Gives reasonable amounts of
severities of observed symptoms, and outputs from
7
Trang 2Biomedical Soft Computing and Human SciencesVol.11 No.1.
NN are coefficients ofherbal amounts in [O, 1].
severities from users and shows resutts written in
prescrlptlons.
rheumatism, ES and explains results from RETS.
POi,i'ikE/,:.,i,//l.:[:"TiONS
Pulseexffniination
.Dlagnose
±
Adiseasestate[sdete[mned cjin/ea]expeFiences
"'
l standaTdpFescriptiOn Herbaludiustrnents
'
FINALPRESCRIPTION
ll:i:L//1:'/1/iYgrrMn".
Herbkl.'.1.'. -.gra71
Fig 2 Structureof ES for RETS
symptoms such as high fever,slightly numbed joints,
moderately yellow urine etc These fuzay expressions
of symptorns make itunsuitable for traditional
vague variables using membership functionsrather
than with crisp vaiues, proyed to be one of the most
December2006
They also enable developers to use linguistic
variables and build a friendly user interface OM
with such expressions as `Cthis
typicalsymptoms with these severities, so I prescribe
those herbswith those weights." These expressions
can be represented naturally in IF-THEN fuzzyrules
In addition, fuzzy rules can giye expert-like
explanations, and make it easier for doctors to
understand the ES.
applications inmedicine have been built, including
OM [2i and rheumatic disease with western medicine
[4].
Then in the second stage, the fuzzy severities of symptoms are put into a corresponding neural network to getan appropriate prescription.
symptoms, l= 12rheumatic states A rheumatic state
the clinical symptoms will not appear in one rheumatic state, the value of n may yary depending
on each state, fbr example n =: 16 for state 1,n == I3 fbrstatc 2,and so on
symptoms on a patient where S,O・ is a fuzzy
rheumatic states
Let si{J==(s]RJ,s2RJ, s,R,J) be a set of symptoms in the premise of rule RJ-(J' 1,2, ,l)
where R.i is generally described in the fo11owing fbrrn :
IF Sfi'andS2R' and ,andS.it
THEN therheumaticstate is II
r
number
Si'bedefined:
Trang 3Thang Caoet al.:An Applieationof Seft Cemputing to RETS: Rheumatic Evaluationand Treatment System by Oriental Medieine
R
rheumatic state Hy given by skilled doctors via
survey in advance, wherc:
'H.i,
affecting H,i, and O</tsitj <1 means S,RiafTects
Hi with certainty factor ptsfe,
Forexample, symptom "Afraid
ofwind" is the most
no effect on rheumatic state 3.
rnaximum beliefdegree ofthe premise of ru]e R, is
consider the importance yaiues within this boundary,
avoiding many doctors freely express the importance
of symptoms with theirown view
i LtsR) /.
10.17
Ima
O.25 O.12ee
O.22 s,
symptoms in the premise of a rule In this case,
symptom S7 is more important than the others S?
affects Riwith thc certainty factor pts,ft,= O・25
If an observed symptom S,O is found in the
M'<, ="sf) op ItsitJ' (i rmr l,2,・・・,n) (3)
where op is a t-norm operator, xopy=(xxy) in
RETS.
If symptoms SR' of RJ match observed symptoms SO , conclusion weight of the rule RJ
(denoted by u,R, ) is calculated as:
WI{J =s,
.{s g, ?J.so} MJg,
(4)
where e is a t-conorm operator, this t-conorm
should be compatible with (1).xe}, (x+y) in RETS.
For example, rule Rs has 6 syrnptoms:
observed on the patient: Si, S2, , Sii.Suppose that
fbr Rs as in thecolumns2 and3 on Tab.1 Then we
have theactua] effects (u・tt,,)of each symptom in
weight ofthe rule wR, as in the final cell ofthis tab]e.
Tab.I.ExamleofCalculatinRuleConclusion Symptomlrnportanee
value"s,1jSeveritiesUs,o
5li,si
Zl'.s・f.{fi=1WR5=,s,,.{sORin,go}W.St,
-O.675
Then RETS finds the most serious rheumatic
state H' which has the largestconcLusion weight wR,
among l rheumatic states:
H'-{HklW&-M,aXU{R,} (s)
rules are as shown in Fig 5 In this case, the most
serious rheumatic state is the state 4 with wi{, = O.55
iliseeIE
I"
gge・, ll T //,?/x,,,s,#13,/ee/r,,liliii i i・piii , i・ilii'
ITiil・i l・
t, ¢ e e di $ ee val m esb l - de th・mut ee ua' {"' " emp fi ep ep e ge.
Fig 4 Example of selected symptoms
9
Trang 4Biomedical Soft Computingand Human SciencesVol.11 No.1.December 2006
with one or more rheumatic states, system finds the
most appropriate rheumatic state H" corresponding
with any rheumatic state, RETS givesan advice about
the closest rheumatic state In this case, patient may
fx
,f N
l 1 ST,XRT 1i
.il
'K
./.7
Fig 7, is used to adjust amounts of herbs in
with 12 rheumatic states, Input data to NN are
state-specified symptoms S,9 (i 1, , n) with severities
ck (k= 1, 2, , , p) in [O,1] In RETS, NN often hasn
INPUT.F,AYER I-IrDDENL,XYER OUTPUTLAYER SeveritiesorspeciricsymptenEin[O,1] Cvefllcieetsofamountsofherbsin[O,11
"s,
Getinputsy!nptoinsSO
ebservedunthepat ÷ ent
mptomshtomatch
withonerhcumatic state?
No
Yes
Findthccloscstrhcumatic
statehavingmaxirnum
Y'it.,fuz4'value
1Giveexplanutionsuboutthc/
closestrheurnat ± cstaLe
arcmatchr
[
E
i"t,zs 'i
:{,:.,,i,:g,g"///:,:,::・:・//:s
to
llS,
・-i
ENDY
,is
-Gctprcscriptienfiomc/iitputsofNN -GeLcxplalnationsabeutthcrhcumaticstatc
/?i.splay results
Prescriptions
analyze, model and make sellse of complex clinical
data across a broad range of medical application [5].
It enables intelligentsystems to learn from
experience, examp]es and clinica] records, improving
symptoms and herbal amounts based on typical
sample prescriptionscollected from experienced
symptoms observed on the patient,
data are norrnalized as:
ck=nj/ifS (6)
vaVP=ek ×ur" (7)
where nj is the arnount of herb k in training data,
nj' is actual amount of herb k in the prescriptive
results, and M* is the maximurn amount ofa herb in
''i
== 20or 60 grams.
from experienced doctors in Thaibinh OM Col]ege,
we haye assessed irnportant fuzzy va]ues of
symptoms in rheumatic states, chosen standard
and equiyalent herbs,selected specific symptoms that affected herbal adjustments, then generated 12,OOO
severities of the state-specified 'symptoms using
ranges of herbaladjustments Training data for NN
rheumatic prescriptions from theexperienced doctors.
survey, we built RI]TS in Visual C# running on MS
adopted a sigmoid activated function Adaptive
Trang 5Thang Cao et al./An Applieationof Soft Computing to RETS: Rheumatie Evaluationand Treatment System by Oriental Medieine
andexplanations,respectively
adjustments in the training data.rangesof
herbal
reasoning and explaining capabilities forrheumatic
treatments.
nonlinear relations (real prescriptions and rules of
accuracy of 1o-2 mean-square error for both training
then shows the advised prescriptionwith appropriate
amounts ofherbs by NN Most of these prescriptions
are comp]etely compatible with the rea] prescriptions,
We built RETS: Rheumatic Evaluation and
system by fuzzy inferencesand herbaE prescription
system by NN Then we could confirm that RETS has
narrow domain of expertise, RETS is developed for
other diseases besides rheumatism, doctorscannot
solely rely on thissystem since they do not have
evidence to contro] potential effects of the herbal
remedies on theother concurrent diseases Hence, it is
recommended that the system be used on]y for
other concurrent diseases.
system in therea] patients and comparing system's results with the doctors' diagnoses
'
e.e#.neeeed/4tm'utliDsl AbEu.l
: /: : " : X :
{,S-fie"-1rnftt.":le: , i・'seeeas i'lt1111I・l・・/t
pFtilo,,wh.t/A・g,・・
/;g.ex1
t .
-/1・;ur :ffdeCaoThengFrm.pde
ft di
S]idctbrsettin!theseveritiesof
theselectedsymptom from thclist
.・t・ ti de wn
・ '・ g 'gisi is.,2・・ ,,
"es・m.i.e.c;{.t/.gg.vaggil::;i;$e
s di w tr w' w W.vr.T :.: .tm.mm
"' /2 m'me ss :
e e p pt' t 'mpethth' tsl:it
rtsikgtiedi"-th-thXe v ・-ny-ee・ di ec '.'Fiva e ・rejt・
rm.e m e e t pt wt s ww wpt 'tajiSfecgniede.e.i?sg&ieempvrwwrsemeeeee1Wwee ptps"i".-.± ididw
; 1:'
1-11.1:it
i
le'
/. 25Revengi ・ ・ -・・?E teihaagvimev' # FyeTHEregyswttwg' de '
di/lg mame'ee de 'eewh 'dei'ee ir. th・ S.
1e, Jqlntsvrti beU]loddtcd Ev)olie'npt op en W'ge.
・ ・・ -tsu naan su・・
'
9 Jo/nls:d/'l'ls;vo'ltm.-/hot/thoL"t-lomi-min ・
,Sl'!i,',,,ny',i'hs
"kn/iliir,s",coFdi.',ghgi,II'i'l,,
・igee mTouNGuE.patpAIIoNs'nerwcptxeasvaeeiiM '1-14.HandtEhd'fe'etatecol(tiaggasS\iilg
1 ・IE L'frkjd/o/・1-wl'id' ・ - . e ew pt ts' 'retff
・le"'nl:efaz-,・ mOSS ' '.
17Wti.rteasttc(S t?-nple mo,sg g gw::' ff'.
./ l, /// l・i //Iitlg.tlli,3111:,li/
l' i' l l i l・ i' ll・ I-1i' l・,A・
l .2i EaSte:ng.hgrd'pui'se''/ : : : ':
1/-22,Hartimlilse ., t・ts su ・sdi・isma・
in.m x
ma de・-,/・
in
ti-di as ere・vemveeew
.t.lat.g ut・t.
t.t
las
t'ti de/ge ・ve・wpm
vafimin
e/eeeeeeeveeva
.sS fffiva:a / ;1 ;Fentvaru#,vb:; :
f}1 asnueveteswa e
iF-eeeeew gee
1/,WWwwwv ,- va sltgzalime we w
l el
v.
ma digegagesg geempssg : , . g ff
li,i'
ll/kell'ili'
iX・l,:l・/i
g}・g・g,pg・x/:・ggs・k-gii-,T'IS・,
[llllll
i
i"'u"
-ag'k'
i,tts,ut,T,1/iov i,' ,,ci'
ttlj・kTi il}il・i.i・ll '
l "
l'
l'
ll・l
Selectedsyptomsandtheirseveritiesonthepatient
v, za fi tu Ide de in it・ diedegeg,ffva va.'
BrLeflvlafitsgttrtspasdisg -tgngwaeetwg "}
ts::・::.ww.eyw- th wb.
/:
1:di1e・
,,tkeX,e・/9,/・.
lliri'/ec,as,.i,,i lllifi/k/ifa
.ee/
i
i
'j"
fii?'/l,i'
li/iC
i'/i'
Sli
ffre
tvaeeee weeee・eeepm
fg ggg $ ww.i.ma
,
・wny ww
eeeetaClinicalSymptoms
i:Me-im-th-ee-wwtw-ew-w-ww-ma-/:;"wh nt es de leth diea ¢wdieecaW/
v de"th de skia ee e.g#ggsgvg,
e ip p・ de inineIM ifeijxe re W e・WW'
filiiialmgi :, x, gileeit
ee/es es ee ww - .
::gsiei{
11
Trang 6BiomedicalSoftComputingandHuman Sciences Vol.11 No.1.December 2006
1' esISiillilllg$#leei maee /wyes/veiiv//',ei i asi#l:ll!ISigeSIFiliiiuei#lliliiililge;IIi
・g#・ggeefigff,g'
ei'
;;;E
mesen
il・IA・:-!,:#k 'e・wii・vee
g,#/,,it・:,z/kts ・
iz.:,・is:w・,a
g・
"e
,S4rwhrtetsneue, g
wrVSsuSM"meeunw
easSoUtieme pulw- su w nyeive de di th n et va - nv
$lkgv e[g/.ff]t./ /xw.
gellee ee
eee di th nt e t p ve tu
vaffSkS4m aj "e2ema vgeWeedidi didi aj di} ane wva w ve ee w va et ca otk4miut
deee va va vavaecretawpmaas
mpgeewveveeeeve mame ee wts ee W va su eneeen
tm Rheurnaticstate-specifiedsymptorns
andtheirseverities
re eeB ee l
}"vvalet
ttva
/as
gang]1v
esme
ane}
asvi:diei ・siee2・
ii'ire
# mp
ili・
I
'ifgi'
i
'
tiliSifi
e・hg/ik・I'g/gii/i・i//i/
Mg・J/
di tv"
l/1ee
utwtptee
ssff
tme
tt
-BriefexplanaLionsabotittherhcumaticstate.m.i
Treannentherbswithrcasenab]eainounlsl'ortherheumaticstatc
{eeeeeereeets
e va va th as
labr,erwwoTke
speurtiEvat" de "
ee} ee tuas s'
rimplww gedi, rtdi
illl r
-il'x・
.illi
・
;F'
E,h illigile,/w,,\・lg・,/g,lr/T,iia・l,T,li・ il, iiit tsiiesti1?'
ge
gte,$s,;,Eee,xes sst ・
it.th
ffefieRag
tg".de S.""gn,,,egah,mamopeeqI#Errorgraphintrajningprogress
ii,iiizi s.gk,i,,?iy.i.,ee-w
,i3jz・,e・g・ft,slg
"
:enlar/,as
[weights scee za
:.:-.x-.rv :x・ter:・ne.#a,-gssg-.Gg:
,Wee eewassggsl:
:・ws
be de
ft di thma
asts-
i,mp1
ve /va'es imp
ng
ewwwuavaN'W'va
Mlffdenttata"-ri-i
ft {' thewts me mt de w t tu
di tE"e eefi#e 4.
"wnvvvva eeM t ts di
ut mu-wh e e e ma
va eweee re ts, dipt endi Mesascaas"seede.'tgve egepm,evemsee
ll/y・,ede
va"
,la,#ill・lli・.;i・o l,g 'mp
i i ll' Sl
-iiiiii " t///i,,tk/iii#,ssi,l//・I・lil・llt・lsii,g'
i, i・,yl,ill・i ' X
N
1111'l1
''i
severitiesobserved onthepatient v'bggyfpmecnee km estu
su th ni di tigna-"
:ai,i:/xig・ ,wy.',,x,ixl{/{,i,gr,l/g'tspV.,
'
iilS'tl'
-・ epe::::i
:, iigggifT/ gl :g;'vaffggge :: ::
tvatin"de wn-t
i$asPSies-M.ma.-#ewwwme,.,.:
1an det tde"al.th dethtt
:is・,e:,: ge f
iwkwadie:Lct,.X:ggg#6:g:;,.
i #tgXi$s as" ep, de.
m gEgee,de.
xsi :
l #eggesijdiyGz g ee # #g g ::ii g
in mdithstwhregfiff e veee-dieeety lasema ma in ve metsWptptsu -'MfftiedidiTenmse
su e es e.Z"m s w 'W{4 th th w
'Ii,k[:,:・tTs?ltr!111g,igl,ges・sts'ikkasig,t,'gt・."・i,,i・,kgi・S#,k,g,ggi'
ess・}e- l-,ww:・/:g,・ii'l,e,.i,g"cgeij/gptw-.:ift:},gl/isgilgeglei・v.gli,!g,k'i
・eq gSgg・gg9g・9fY/di ℃ g'S{eSeeby"7re.2exl:`z"!i .:: g2 gevny・"
ts,l'/eu,/k・/stg,S g'ESfijin i.,ce,ISS.ggst,gs'la,srg,g・as,ngg・g'g.':rp.,,,':t:,gg,4,i"
g",es"i.
'
lki,/wyik・# ,//it・,elilie ・
,g
'
,gk,
v
.twlgi,,lii:,i,ilis
i
s・,wilo
,g,klitiii'
wwwumma/W en ma en en th me ma m. ,
imlmenwggxve.eeiS#lg
'\ig#igee.i,gffl
v
ffedere
fi
.kfo・geaza : ; ggge# g gi, gigdien : :gx#2::g$x:
gdiaststsas.dieees as ee twgee ee eesi es
va{wwwmp tmwigweewfive va wtW
WI.igPrtutnepimJcrIVSwde mpen?wwu n su mptmp en rm e va ww rpweW op dn
pt1{etrEhtselele) - - ve-o-m ve
sulfiMtha -t-ur dith th .
i#・:fi #,ss・ ,ks- g gg #:s g,,i
eegge eeeiaseeeeff va
ee ee utIee mpeua eentvaeee uaem eua me mel ee
eeg ee va,ee va ee as ee ma me #Ik
w{ vam wee vage eeeeme,w
Advisedtreatmentherbs '1:
!
1di withreasonableamoullts
-lt
-'ajopdiWeeutde,mmumeffvaeeeWe,va
i g・ x issec mei
m'veengdedeeut,deptpm-mdemamefi.,
References
2001
[31
utilisation of fuzzy tcchnology in Medicine and
331-349E.H.
Trang 7North-Thang Cao et al./AnApplieation of Soft Computing to RETS: Rheumatie EvaluationandTreatmentSystem byOriental Medieine
Holland, New York, 1976
261, 1993
1994
Limited 2002, pp 12
Lectures in Oriental Medicine, Medicine Pub.
***
Thang CAO
1994/BachelorofElectronics.
Hanoi Universit},ofTechnology 2005/ MS Ritsumeikan Univcrsity
enas
bee ifde
'
.l
Eric W COOPER 1998/ MS, Computer Science,
Rits-ncikanUniversity
Univcrsity2003/
Jeined COE prograrnas
post-doctoralrescarcher
2006/ Associate Profossor, RitsurneikanUniversis,
YukinobullOSIItNO
2002/ Doetorof Engineering, Ritsumeikani Universlty 2002/ Assistant Professor, RitsumeikanIJniversity 2006/ Associate Professer, Kochi L)niversityofTechnology
KatsuariKAMEI 1983/ Assistant 1'rofessor.
Ritsumeikan L]nivcrsity ]993/ Associate Professor, RitsumeikanUniversity
University
HeangPhuongNGUYEN l979/MSc,TashkentState
Universits'
Scicnccs Teehnical University of
Vienna.Austria.
200S/Directoroflnformation Tech Center MinistryofIIeallth
ofVietnam
***
13