1. Trang chủ
  2. » Giáo án - Bài giảng

Broad range chemical profiling of natural deep eutectic solvent extracts using a high performance thin layer chromatography–based method

10 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Broad Range Chemical Profiling of Natural Deep Eutectic Solvent Extracts Using a High Performance Thin Layer Chromatography–Based Method
Tác giả Xiaojie Liu, Samantha Ahlgren, Henrie A.A.J. Korthout, Luis F. Salomộ-Abarca, Lina M. Bayona, Robert Verpoorte, Young Hae Choi
Trường học Leiden University
Chuyên ngành Natural Products Chemistry
Thể loại Research Article
Năm xuất bản 2018
Thành phố Leiden
Định dạng
Số trang 10
Dung lượng 2,02 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Natural deep eutectic solvents (NADES) made mainly with abundant primary metabolites are being increasingly applied in green chemistry. The advantages of NADES as green solvents have led to their use in novel green products for the food, cosmetics and pharma markets.

Trang 1

j ou rn a l h om ep a ge :w w w e l s e v i e r c o m / l o c a t e / c h r o m a

method

Xiaojie Liua, Samantha Ahlgrena,b, Henrie A.A.J Korthoutc, Luis F Salomé-Abarcaa,

Lina M Bayonaa, Robert Verpoortea, Young Hae Choia,d,∗

a Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands

b Division of Pharmacognosy, Faculty of Pharmacy, Uppsala University, 751 05 Uppsala, Sweden

c Fytagoras BV, 2333 BE Leiden, The Netherlands

d College of Pharmacy, Kyung Hee University, 02447 Seoul, Republic of Korea

a r t i c l e i n f o

Article history:

Received 16 October 2017

Received in revised form 3 December 2017

Accepted 4 December 2017

Available online 6 December 2017

Keywords:

Natural deep eutectic solvents

Chemical profiling

Ginkgo

Ginseng

High-performance thin-layer

chromatography

a b s t r a c t

increasinglyappliedingreenchemistry.TheadvantagesofNADESasgreensolventshaveledtotheir useinnovelgreenproductsforthefood,cosmeticsandpharmamarkets.However,oneofthemain diffi-cultiesencounteredinthedevelopmentofnovelproductsandtheirqualitycontrolarisesfromtheirlow vapourpressureandhighviscosity.Thesefeaturescreatetheneedforthedevelopmentofnewanalytical methodssuitedtothistypeofsample.Inthisstudy,suchamethodwasdevelopedandappliedtoanalyse theefficiencyofadiversesetofNADESfortheextractionofcompoundsofinterestfromtwomodel plants,GinkgobilobaandPanaxginseng.Themethoduseshigh-performancethin-layerchromatography (HPTLC)coupledwithmultivariatedataanalysis(MVDA).Itwassuccessfullyappliedtothe compara-tivequali-andquantitativeanalysisofverychemicallydiversemetabolites(e.g.,phenolics,terpenoids, phenolicacidsandsaponins)thatarepresentintheextractsobtainedfromtheplantsusingsixdifferent

molarratios;malicacid-cholinechloride(1:1),malicacid-glucose(1:1),cholinechloride-glucose(5:2), malicacid-proline(1:1),glucose-fructose-sucrose(1:1:1)andglycerol-proline-sucrose(9:4:1).Ofthese mixtures,malicacid-cholinechloride(1:1)andglycerol-proline-sucrose(1:1:1)forG.bilobaleaves,and malicacid-cholinechloride(1:1)andmalicacid-glucose(1:1)forP.ginsengleavesandstemsshowed thehighestyieldsofthetargetcompounds.Interestingly,noneoftheNADESextractedginkgolicacids

asmuchastheconventionalorganicsolvents.Asthesecompoundsareconsideredtobetoxic,thefact thattheseNADESproducevirtuallyginkgolicacid-freeextractsisextremelyuseful.Theeffectofadding differentvolumesofwatertothemostefficientNADESwasalsoevaluatedandtheresultsrevealedthat thereisagreatinfluenceexertedbythewatercontent,withmaximumyieldsofginkgolides,phenolics andginsenosidesbeingobtainedwithapproximately20%water(w/w)

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/)

1 Introduction

Natural products (NPs) are undoubtedly the most plentiful

sourceofnewbioactivecompoundsandplay animportantrole

in our daily lives, being used for their medicinal, nutritional

andcosmeticproperties,andinindustrialapplications.However,

∗ Corresponding author at: Natural Products Laboratory, Leiden University, 2333

BE Leiden, The Netherlands and College of Pharmacy, Kyung Hee University, 02447

Seoul, Republic of Korea.

E-mail address: y.choi@chem.leidenuniv.nl (Y.H Choi).

extractionfromtheirnaturalsourcesisgenerallyacomplex pro-cess, consisting of several steps that involve the use of large volumesoforganicsolvents.Unfortunately,mostofthesesolvents arebannedintheuseofproductsforhumanconsumptiondueto theirtoxicityorareextremelyrestricted.Ingeneral,thesesolvents arealsohighlyvolatile,posingashazardstotheenvironment.For thesereasons,thechoiceofsuitablesolventsisverylimited[1] Thegreen extractionof NPscanbeachievedby using inno-vative extraction techniques and/or sustainable alternatives to conventional solvents Great improvements have been accom-plished with the use of non-conventional techniques such as ultrasound-assisted extraction, microwave-assisted extraction, https://doi.org/10.1016/j.chroma.2017.12.009

0021-9673/© 2017 The Authors Published by Elsevier B.V This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ).

Trang 2

thesetechniquesevenallowforsolvent-freeextraction,including

microwavehydro-diffusionandgravity,enzyme-assisted

extrac-tion[3]andthermaldesorptionsystems.However,forlarge-scale

extraction, theuse ofsolvents ispractically unavoidable hence

it is necessary tofind alternatives tothe conventional organic

solvents and/or mineralacids Amongst the green options that

have appeared sofar, themost popularare super- or

subcriti-calfluidsandionicliquids.Supercriticalfluidextraction(SFE),in

particular withsupercritical carbon dioxide (SC-CO2), hasbeen

usedextensivelyforyearstoextractmanynaturalbioactive

com-poundsoreliminatetoxiccompoundsfromavarietyofmaterials

[4–6].However,despiteitsenvironmentalbenefits,theefficiency

of CO2 for the extraction of polar/hydrophilic compounds and

macromoleculesislimitedandmanybioactiveornutritional

com-pounds,suchasphenolicglycosidesoralkaloids,arenotextractable

due to their poor solubility in CO2 Other alternatives in the

green list include conventional solvents such as water, certain

agro-solvents(e.g.,ethanolandglycerol)andsurfactantaqueous

solutions[7,8]

Anothertypeofnovelalternativesolventsthathavegained

con-siderableattentionwithinthepastfewyearsareionicliquids(ILs)

ILsaresaltsthatconsist ofcertaincombinationsof cationsand

anionswithmelting pointsthatarebelow100◦C.Theseliquids

possessmanyattractivephysicochemicalpropertiessuchaslow

volatility,someelectrolyticconductivityandtunableviscosityand

miscibility,makingthempromisingsubstitutesfororganicsolvents

in numerous processes like biocatalytic processes, extractions,

catalysis, and electrochemistry [9–11] However, their toxicity,

poorbiodegradabilityandthehighcostofsynthesisingtheirmajor

componentscausemajorhindrancefortheirwidespread

applica-tionasextractionsolvents

Anotheroption,deepeutecticsolvents(DES),aremixturesof

specific organiccompounds (not necessarily ionic)that have a

muchlowermelting pointthaneitheroftheindividual

compo-nentsand,similarly toILs,areliquidsat ambienttemperatures

[12].DESexhibitsimilarphysicochemicalpropertiesascommonly

usedILs(e.g.,highdensityandviscosity)buthavetheadvantages

ofbeingsignificantlycheaper,easiertoprepareandlessimpactful

ontheenvironment.Inadditiontothis,theycanbetailoredtobe

target-specific.Theseuniquepropertiesallowforawiderangeof

applicationsofDESinfieldssuchasextraction,catalysis,materials

chemistry,organicsynthesis,metalprocessing,and

electrochem-istry[13,14],aswellasintheextractionofDNAandasaMediafor

enzymaticreactions[15,16]

AnumberofobstaclesremainintheapplicationofDES,

particu-larlyinthosemadewithsyntheticcomponentsinwhichtoxicity

is anissue Searchingfor alternatives,Choi and hisco-workers

haveexploredmorethan100combinationsofDESusingonly

com-monmetabolitesthat areabundantinplants [17] Theynamed

thesecombinations;‘naturaldeepeutecticsolvents’(NADES)[17]

Theseliquidsarebio-basedDES which arecomposedof twoor

morecompoundsthataregenerallyfunctionalprimary

metabo-lites,i.e.,organicacids,sugars,(poly)alcohols,aminesandamino

acids[17,18].Apartfromsharingthefavorablecharacteristicsof

ILsandDESasdescribedpreviously,NADEShaveadditional

advan-tagesofbeingcomposedofnaturally-occurringcompounds,being

muchmoresustainableandposingpracticallynoenvironmental

hazards.ThishighlightsthegreatpotentialofNADESforits

applica-tioninvariousareas,namelyintheNPfieldasanextractionsolvent

Currently,themoststudiedapplicationofNADESassolventsfor

NPsistheextractionofdifferentphenoliccompoundsfromplant

materialsuchasCarthamustinctoriusflowers[19],Sophorajaponica

flowers[20],Cajanuscajanleaves[21],Catharanthusroseus

flow-ers[22],grapepeel[23],andanthocyaninsfromwine lees[24]

Theyhave also beenappliedfor the extractionof ginsenosides

fromPanaxginseng[25]andfoodcontaminants[26].Recently,the firstcommercialNADESplantextractswerelaunchedascosmetic ingredientsandinthecomingyears anumberofnovel NADES-basedproductscanbeexpectedinthefood,cosmeticandpharma markets

Given the increasing amount of NADES applications, the methodologicalproblemsrelatedtotheanalysisofNADESextracts mustbeaddressed.Theseproblemsarerelatedmainlytothe neg-ligiblevolatilityofNADESthatmakestherecoveryofcompounds fromNADESextractsortheeliminationofinterferingNADES com-ponents very difficult Sofar,most analysesof NADES extracts havebeenfocusedonphenolicsthatposefewmethodological chal-lengesgiventheirhighly-absorbingchromophoresthatallowdirect UV-spectrophotometricanalysiswithfewtonosampleclean-up procedures.Differentchromatographicmethodshavebeenusedto identifyandquantifyindividualcomponents,includingthe deter-minationoftheanthocyanincontentinflowerpetalextractsfrom

C.roseus[19]andflavonoidsinflowerextractsfromS.japonicavia HPLC-DAD,usinganti-solventstrategiesforrecovery[20] Along-sidechromophorecompounds,volatileshavebeenrelativelyeasily analysedbyGCfollowing simpleliquid-liquidextractionfroma cholinechlorideand4-chlorophenol(1:2)NADES[27].However, noneofthesemethodscanbeappliedtothefullrangeofvery chem-icallydiversecompoundsthatarepresentinNADESextractsfrom biologicalmaterials

Withinthepastfivedecades,thinlayerchromatography(TLC) hasadvancedgreatlyfromasimpleplanarchromatographic tech-niqueformajorqualitativeprofilingintoamulti-targetquantitative analytical tool withmany applicationsin thefieldof medicinal plants The main disadvantages of TLC, suchas its low resolu-tionandpoorquantitativeperformance,havebeenconsiderably improved by the optimisation of the conventional TLC set-up Nowadays, the basic steps of TLC-based methods, i.e., sample application,chromatographicdevelopmentanddetection,canbe automatedandcomputer-controlled.Otherundesirable character-istics,suchaslow efficiency,havebeenimprovedwiththeuse

of high-performancethin-layerchromatography (HPTLC)plates, whichusestationaryphaseswithsmallerparticlesizes(5–6␮M) and high-resolutionsorbentswithimprovedsilica particlesand chemically-modifiedphases.Thesemodernsystemsfeaturehigh reproducibility in retention, detection and quantitative analy-sis For further statistical evaluation, electronic images of the chromatogramscanbegeneratedandusedformultivariatedata analysis.Asfortheidentificationofcompounds,notableprogress hasbeenmadeinthedirectonlinecouplingofHPTLCwithmass spectrometry(MS)[28–31]whichintroducesnewopportunities fortheapplicationofplanarchromatographyinmetabolomics Combiningalloftheseimprovementswiththeadvantagesof multi-sampleanalysisinasinglerunandtheoptionforselective detectionofawiderangeofchemicallydiversecompoundsmakes HPTLCausefultoolforthequalitativeandquantitativeanalysisof NADESextractsfromnaturalproducts.Furthermore,the applica-tionofmultivariateimageanalysistoHPTLCchromatogramsallows fortheextractionofincalculablymoreinformationthanthatmade availablebysimplevisualinspection[31]

Theaimofthecurrentstudywastodevelopasuitableanalytical protocolfortheHPTLCanalysisofNADESplantextractsandthen

toimplementittoinvestigatetheapplicationofdiverseNADES (includingavariationinwatercontent)withtheextractionofthree chemicallydifferentgroupsofactivecompoundsinGinkgobiloba (i.e.,ginkgolides,phenolicsandginkgolicacids)[33]andof ginseno-sidesfromPanaxginseng[34–37].Theinfluenceofadjustmentsto thewatercontentontheextractionabilityandefficacyofthemost efficientNADESwasalsostudiedduetoitsknownimpactontheir physicochemicalproperties

Trang 3

2 Materials and methods

2.1 Plantmaterial

GinkgobilobaleaveswerecollectedinSeoul,RepublicofKorea

in2012.Panaxginsengleavesandstemswerekindlyprovidedby

Fytagoras(Leiden,theNetherlands).Samplesusedforthisstudy

wereidentifiedbyoneoftheauthors,Dr.Y.H.Choiandavoucher

samplewasdepositedintheNaturalProductsLaboratory,Institute

ofBiology,LeidenUniversity.Thedryplantmaterialwaspowdered

inablenderwithliquidnitrogen

2.2 Chemicalsandreagents

Bilobalide,ginkgolides(A,BandC),ginkgolicacids(C13:0,C15:1

and C17:1) and ginsenosides (Rb1, Rb2, Rb3, Re, Rg1,Rg2 and

Rg3)were purchased fromBiopurify Phytochemicals (Chengdu,

China).Rutin,chlorogenicacidandquercetinwerepurchasedfrom

Sigma(St.Louis,MO, USA).Methanol,ethanol, chloroform,

ace-tone,ethylacetateandtolueneofanalyticalgradewerepurchased

fromSigma.Aceticanhydride, aceticacidand formicacidwere

obtainedfromSigma.Milli-Qwaterwasused.Polyethylene

gly-col400was purchased from Alfa Aesar(Kandel, Germany) All

ofthe NADEScomponents,i.e., cholinechloride (≥98.0%),

glyc-erol(≥99.5%),L-proline(≥99.0%),d-fructose(≥99.0%),d-glucose

(≥99.5%),malicacid(≥99.0%),andsucrose(≥99.5%)wereobtained

fromSigma.Sodiumacetateand2-aminoethyldiphenylborinate

werepurchasedfromSigma.Solidphaseextraction(SPE)cartridges

(OASISHLB3cc)werepurchasedfromWaters(Milford,MA,USA)

Silicagel60F254HPTLCplateswerepurchasedfromMerck

(Darm-stadt,Germany)

2.3 NADESpreparation

TheNADESemployedinthisstudywerecombinationsoffixed

molarratiosasfollows;malicacid-cholinechloride(1:1,N1),malic

acid-glucose(1:1,N2),choline chloride-glucose(5:2,N3), malic

acid-proline(1:1, N4), glucose-fructose-sucrose(1:1:1, N5) and

glycerol-proline-sucrose(9:4:1,N6)(TableS1).ThefirstfiveNADES

werepreparedbystirringmixturesoftheircomponentsat50◦C

until a clearliquid wasformed [19], whereas

glycerol-proline-sucrose(9:4:1)waspreparedusingthefreeze-dryingmethod[25]

AllofthepreparedNADESweremixedwith10%(w/w)water.The

twomostefficientNADESfor theextractionofeachplantwere

foundtobemalicacid-cholinechloride(1:1)and

glycerol-proline-sucrose(9:4:1)forG.biloba,andmalicacid-cholinechloride(1:1)

and malic acid-glucose (1:1)for P.ginseng.These NADES were

selectedtofurtherstudytheeffectofaddingvaryingamountsof

water(0%,10%,20%,30%and40%,w/w)ontheirextraction

prop-erties

2.4 PreparationofreferencecompoundsolutionsforHPTLC

analysis

Allreferencesolutionswerepreparedseparatelyinmethanol

in the following concentrations: bilobalide and ginkgolides B

and C (250␮g/mL); ginkgolide A and C13:0, C15:1 and C17:1

ginkgolicacids(125␮g/mL); rutin(1.8␮g/mL);chlorogenicacid

andquercetin(4␮g/mL);ginsenosidesRb1,Rb2,Rb3,Re,Rg1,Rg2,

andRg3(30␮g/mL)

2.5 PreparationofextractsandsamplesolutionsforHPTLC

analysis

Powdered plant material (200mg) was mixed with 4mL

methanolorNADESina15-mLcentrifugationtube.After

vortex-ingfor1min,themixturewasplacedintoawaterbathat40◦Cfor

1handthenultrasonicatedatroomtemperaturefor30min.The mixturewasthencentrifugedat13,000rpmfor20min.Analiquot

of1mLofthesupernatantwasusedfortheHPTLCanalysis follow-ingpre-treatment.Allextractswerepreparedbytriplicate.Extracts preparedwithmethanolwereusedtocomparetheyieldofthe diverseNADESextracts

2.6 RecoveryofsamplesfromNADES TheremovalofNADESfromthemixturewasconductedwith solid-phaseextraction(SPE)usingHLBcartridges[25].Briefly,a cartridgewasplacedinavacuummanifoldandequilibratedwith

5mLofethanol,followedby5mLofwater.Afterloadingtheextract solution(1mL),thecartridgewassubsequentlyrinsedwith6mL

ofwatertwiceandthenelutedwith6mLofethanol.Theethanol eluatewasdriedandre-dissolvedin1mLofmethanolforHPTLC analysis

2.7 GeneralHPTLCanalysis Referenceandsamplesolutions(100␮L)werespottedby trip-licateonHPTLC Si60 F254,20×10cm (Merck) plates as7mm bands,underastreamofnitrogen,usingtheCAMAG Automatic TLCsampler(ATS4)(CAMAG,Muttenz,Switzerland)witha100␮L Hamiltonsyringe.TheCAMAGauto-samplesystemiscontrolledby WINCATSsoftware.Allplateswerepreparedsimilarly,spottingthe methanolextractsinthefirstthreelanes,thereferencesolutions

inthenextthreeandthentheNADESextracts

2.8 AnalysisofNADESextractswith10%water(w/w) ThelayoutofthetracksontheHPTLCplatesvariedineachcase For theginkgolidesinG biloba,a total of 13trackswereused, includingtriplicatesofthemethanolextract,fourreferencesand sixdifferentNADESextracts.Bandswereappliedatadistanceof

10mmfromthebottomoftheplateand16mmfromtheleftand therightedges.Forthedeterminationofphenolicsandginkgolic acidsinG.biloba,thenumberoftracksperplatewas12,i.e., tripli-catesofmethanolextract,threereferencesandsixdifferentNADES extracts.Bandswereappliedatadistanceof10mmfromthe bot-tomoftheplateand20mmfromtheleftandtherightedges.For ginsenosidesinP.ginsengleavesandstems,thenumberoftracks perplatewas17,i.e.,duplicatesofmethanolextractofleavesand stemsrespectively,onereferenceandsixdifferentNADESextracts

ofleavesandstemsrespectively.Bandswereappliedatadistance

of10mmfromthebottomoftheplateand18mmfromtheleftand therightedges

2.9 TheuseofNADESwithdifferentwatercontents TheextractsobtainedfromG.bilobamaterialwiththemost effi-cientNADES(N1andN6,seeabove)withdifferentaddedwater contents werethen compared witheach other and againstthe methanolextracts.Inthecaseofginkgolides,thisresultedin17 tracksperplatewith16usedforthephenolicsandginkgolicacids, i.e.,triplicatesofthemethanolextract,threereferences,andthe twoNADESwithfivedifferentwatercontents.Bandswereapplied

atadistanceof10mmfromthebottomoftheplateand16mmfrom theleftandtherightedges.WiththeNADESextractionof ginseno-sidesfromP.ginsengleavesandstems,theeffectofaddedwater contentswasstudiedusingthemostefficientNADESinthiscase, i.e.,N1andN2.Therewere14tracksoneachplateincluding trip-licatesofthemethanolextract,onereference,andtheN1andN2 extractswithfivedifferentwatercontents.Bandswereappliedata distanceof10mmfromthebottomoftheplateand18mmfromthe

Trang 4

werethosedescribed forG.bilobaandP.ginsenginthe

applica-tionnotesofCAMAGlaboratory(F-16A,F-16B,F-16C)[38]andthe

ChinesePharmacopeia[39],respectively(TableS2).Derivatisation

reagentswereappliedwithanauto-sprayinginstrument

(Deriva-tizer,CAMAG)

2.10 DeterminationofginkgolidesinGinkgobilobaleaves

Priortosamplespotting,theplateswereimmersedinan

ethano-licsolutionofsodiumacetate(8gNaOAcin200mLof80%aqueous

ethanol) for 2s, allowed todry in the hood for 5min atroom

temperatureandthenactivatedat90◦C for30minasindicated

intheapplicationnotesofCAMAG laboratory(F-16A)[38]

Vol-umesof25␮Lofmethanolextractsandreferencesolutions,and

80␮Lof NADESextractsolutions werespotted ontotheHPTLC

plateasdescribed.Theplatewasdevelopedinasaturatedchamber

withamobilephase oftoluene-ethylacetate-acetone-methanol

(20:10:10:1.2, v/v/v/v) After drying the plates to remove the

mobilephase,theywereevenlysprayedwithaceticanhydrideand

heatedat180◦Cfor10min.Densitometricscanningwasperformed

atUV366nm.BilobalideandginkgolidesA,BandCwereusedas

referencecompounds

2.11 DeterminationofphenolicsinGinkgobilobaleaves

Avolumeof25␮Lofeachreferencesolution,methanolextract,

andNADESextractswasappliedontotheHPTLCsilicaplateand

developedwithamobilephaseconsistingofethylacetate-acetic

acid-formicacid-water(100:11:11:27,v/v/v/v)inachamber

sat-uratedfor20minbeforeuse,accordingtotheapplicationnoteof

CAMAGlaboratory(F-16B)[38].For thederivatisation,theplate

washeatedat100◦C for3minonaTLCPlateHeater(CAMAG),

thendipped firstin NaturalProducts reagent(1%2-aminoethyl

diphenylborinateinmethanol),driedwithcoldair,andthen

sub-sequentlydippedinPEGreagent(5%polyethyleneglycol400in

dichloromethane).DensitometricscanningwasperformedatUV

366nmafterderivatisation.Rutin,chlorogenicacidandquercetin

wereusedasreferencecompounds

2.12 DeterminationofginkgolicacidsinGinkgobilobaleaves

Avolumeof25␮Leachofreferencesolutionsofginkgolicacids

(C13:0,C15:1 andC17:1),themethanolextract andtheNADES

extracts was spotted separately onto the plate and developed

withamobilephaseconsistingoftoluene-ethylacetate-aceticacid

(8:2:0.2,v/v/v)inasaturatedchamberasindicatedintheF-16-C

oftheapplicationnotesofCAMAGlaboratory[38].Theplatewas

driedwithastreamofcoldairandscannedatUV366nm

2.13 DeterminationofginsenosidesinPanaxginsengleavesand

stems

The plate was developed with chloroform-ethyl

acetate-methanol-water(15:40:22:10)inachambersaturatedfor20min

[39].Ginsenosidesweredetectedbysprayingtheplatewithfreshly

preparedanisaldehyde-sulfuricacidreagentandheatingonaplate

heaterat105◦Cfor5min.Imageswerecapturedunderwhitelight

afterderivatisation.GinsenosidesRb1,Rb2,Rb3,Re,Rg1,Rg2and

Rg3wereusedasstandards

2.14 Imageprocessingandmultivariateanalysis

TheHPTLCchromatogramswereprocessedusingrTLCsoftware

[32]whichconvertstheHPTLCimagesintoanumericaldatamatrix

whichisthenintegrated.Thisprocessgenerateddigitaldataof50

sequential0.02binsoverthefullretentionfactors(Rf)rangefor eachtrack.AnRfof0.02wasselectedasthebinsizebecauseit rep-resentstheindividualbandinasinglebinbutavoidstheRfdrift whichmayresultfrombatch-to-batchvariationfactors.Toreduce thevariationsbetweenthereplicatesthatwereperformedat differ-enttimes,theintensityrecordedforeachRfvaluewasnormalised withrespecttothemethanolextract(referenceextractsample)in eachplate.These0.02Rfbinsweresubjectedtomultivariatedata analysis.Principalcomponentanalysis(PCA)andorthogonal par-tialleastsquare(OPLS)wereperformedwiththeSIMCA-Psoftware (v.14.1,Umetrics,Umeå,Sweden).Theunitvariance(UV)scaling methodwasusedbothforPCAanalysisandOPLSmodelling

3 Results and discussion

ThisstudywasperformedusingsixtypesofNADEStoextract fourgroupsofchemicallydiversebioactivecompounds(phenolics, terpenoidsandphenolicacidsfromG.bilobaleaves,and ginseno-sidesfrom P.ginsengleavesand stems) TheNADES have been grouped into fivetypical types according totheir components, i.e., NADES composedof acids and bases (N1), acids and sug-ars(N2),bases andsugars(N3),aminoacidand acids(N4),and sugarmixtures(N5).InadditiontothesetypicalNADES, glycerol-proline-sucrose(9:4:1,N6)wasselectedbecauseinpreviouswork performedbyJeongandherco-workers,itwasreportedthat gin-senosideswerewell-extractedfromP.ginsengrootsbytheNADES [25].ToreducethehighviscosityoftheNADESasanextraction sol-vent,10%ofwater(w/w)wasaddedtoeachNADES,assuggested

inapreviouslypublishedpaper[18] SimilarlytoconventionalsyntheticDESorILs,NADESextracts have virtually zero vapourpressure which means that the sol-ventcannotberemovedbyevaporationasis generallythecase whenorganicsolventsareusedforextraction.Theremovalofthe extractionsolventisgenerallynecessarywhenanalysinganextract, concentratingthelow-levelcompoundsoravoidingitsinterference withtheanalysis.InthecaseofNADES,twoapproacheshavebeen proposed,namelyliquid-liquidpartitioning[27]andsolidphase extraction(SPE)withdiversesorbents[20,25].However,neither methodcompletelyremovedalloftheNADES.Liquid-liquid parti-tioningisonlypossiblewithnon-polarsolventssuchasn-hexane, dichloromethaneorchloroformbecausemostNADEScomponents aresolubleinpolarormid-polarsolvents,makingitdifficultto sep-aratethemfromtheextractedpolarsecondarymetaboliteswith similarpolarities.Ontheotherhand,SPEhasprovedtobequite effi-cientinpurifyingsecondarymetabolites,thoughNADESresidues maystillcauseproblemsinvariousanalyticalmethods

So,thereisaclearneedforefficientmethodsthatcanbeapplied

tothevastrangeofchemicallydiversecompoundsfoundinNADES extracts.ThinlayerchromatographyhasalongtraditioninNP anal-ysisand,inthepastdecade,hasevolvedintoahighlyimproved techniqueknownasHPTLC[40].Thistechniquemeetsallofthe mentionedrequirementstoagreatextent.Inparticular,the pos-sibilityofthesimultaneousanalysisofseveralsamplesonasingle plateandthepossibilityofapreparativeworkbymassand/orNMR spectroscopyconstituteagreat advantageoverother chromato-graphicmethods[41,42]

TodevelopHPTLCprotocolsfortheanalysisofNADESextracts,

we usedtwo well-knownmedicinalplants asmodels,G biloba andP.ginseng.Theplantmaterialwasextractedwithsixdifferent typesofNADES.TheseextractswerethenanalysedbyHPTLCfor thepresenceoffourdifferenttypesofcompounds;phenolics, ter-penelactonesandalkylphenolsinG.bilobaleaves,andtriterpene saponinsinP.ginsengleavesandstems

TheNADESextractswerefirstanalyseddirectly,withoutany pre-purificationsteps,toevaluatetheinterferenceoftheNADESin

Trang 5

Fig 1.High-performance thin-layer chromatographs (HPTLC) of methanol extracts and six natural deep eutectic solvent (NADES) extracts with 10% (w/w) water for ginkgolides (a), ginkgo phenolics (b), and ginkgolic acids (c) of Ginkgo biloba leaves, and ginsenosides of Panax ginseng stems (d) and leaves (e) Ginkgolides were ana-lysed after derivatisation with acetic anhydride at 366 nm using plates that were impregnated with an ethanolic solution of sodium acetate (see details in M&M) Ginkgo phenolics were detected after derivatisation with the natural products reagent (NPR) and PEG 4000 at 366 nm Ginsenosides were visualised under white light after treatment with the anisaldehyde-sulfuric acid reagent The detailed HPTLC conditions were provided in the experimental section M: methanol extract, N1-N6: NADES extracts N1: malic acid-choline chloride (1:1), N2: malic acid- glucose (1:1), N3: choline chloride-glucose (5:2), N4: malic acid-proline (1:1, molar ratio), N5: glucose-fructose-sucrose (1:1:1), N6: glycerol-proline-sucrose (9:4:1) Reference compounds: 1: bilobalide, 2: ginkgolide A, 3: ginkgolide B, 4: ginkgolide C, 5: quercetin, 6: chlorogenic acid, 7: rutin, 8: ginkgolic acids (C13:0, C15:1 and C17:1), 9: ginsenoside Rg3, 10: ginsenoside Rg2, 11: ginsenoside Rg1, 12: ginsenoside Re, 13: ginsenoside Rb3, 14: ginsenoside Rb2, 15: ginsenoside Rb1.

theHPTLCmethodsforthefourdifferentgroupsofNPs.The

pres-enceofNADEScausedseveretailingofspotsinallofthesystems

Itwasclearlynecessarytoperformsomesampleclean-up

proce-dures,henceSPEwasselectedasthemethodofchoicefor this

Becauseoftheirabilitytobindawiderangeofsecondary

metabo-lites,includingglycosides,OasisHLBcartridgesweretestedforthe

purificationofginsenosidesfromtheNADESextractscomposedof

glycerol,prolineandsucrose(9:4:1)[25].TheNADESextractwas

introducedontothecartridgeandtheNADEScomponentswere

removedbyaninitialelutionwithwater,afterwhich the

com-poundsofinterest wereeluted withethanol Thequalityofthe

HPTLCseparationimprovedastailingcompletelydisappeared

TheNADESextractsof G.bilobaleavesandP.ginsengleaves

andstemswerealltreatedinthesamewayandthenanalysedby

HPTLC.Fig.1showsthefourgroupsofmetabolitesthateachcan

bewellvisualisedinthedifferentHPTLCchromatograms,clearly

showingitspowertodetectawiderange ofchemicallydiverse

groupsofmetabolites[43].TheP.ginsengsaponinswithout

UV-chromophoreswereabletobevisualisedat254nmand366nm

aftertreatmentwiththeanisaldehyde-sulfuricacidderivatisation

reagent(Fig.1d,e)

VisualexaminationoftheHPTLCchromatogramsshowedthat

the extractionefficiency of all NADES employed in this study,

exceptfortheall-sugarNADESN5,wassimilartothatofmethanol forginkgolidesandphenolicsfromG.bilobaandforginsenosides

inP.ginsengleavesandstems(Fig.1).Ginkgolicacidswerenot sig-nificantlyextractedbyanyoftheNADES.Ingeneral,plantaliphatic phenolslikeginkgolicacidshaveverylowpolarity,whichmakes themdifficulttobedissolvedinpolarsolvents.MostNADESare categorisedaspolarsolventsandcouldnotadequatelyextractthe non-polarginkgolicacids

Inthecasesofginkgolidesandginsenosides,theNADESextracts showedfewerbandsthanthemethanolextracts,butallofthemain compounds(bilobalide,3ginkgolides,and7ginsenodides)inthe NADESextractswerestillpresentinsimilarconcentrationstothat

ofthemethanolextractswithanexceptionforthesugarmixture (N5)(Fig.1a,d,e).InthecaseofG.bilobaphenolics,NADESextracts displayedmorebands thanthemethanolextracts,forexample, withinthe0.35–0.38Rfrange(Fig.1b).Themoststrikingfeature, however,islowextractionyieldoftheginkgolicacidsinalltested NADESrevealingclearlydifferentextractionprofilesfortheNADES andmethanol(Fig.1c).Ginkgolicacidsareconsideredtobetoxic and thepresenceof thesecompoundsis unwantedin G.biloba extractsthatareusedforhumanconsumption,sotheextractionof theleaveswithNADEScouldresultinhighqualityGinkgo prepa-rationswithverylowginkgolicacidcontent

Trang 6

Fig 2.Score plot of principal component analysis (PCA) of natural deep eutectic solvent (NADES) extracts and methanol extracts of ginkgolides (a) and ginkgo phenolics (b) in Ginkgo biloba leaves, and score plots of orthogonal partial least square discriminant analysis of ginkgolides (c) and ginkgo phenolics (d) M: methanol extract 1–6: NADES extracts 1: malic acid-choline chloride (1:1, molar ratio), 2: NADES of malic acid- glucose (1:1), 3: choline chloride-glucose (5:2), 4: malic acid-proline (1:1), 5: glucose-fructose-sucrose (1:1:1), 6: glycerol-proline-sucrose (9:4:1).

Theresultsobtainedinthisstudyhighlightoncemorethegreat

potentialofNADESasagreenalternativesolventfortheextraction

ofphenolics.ThishighextractionpowerofNADESforphenolics

mayberelatedtoH bondinginteractionsbetweenthefunctional

groupsofthecomponents(e.g.,hydroxylandcarboxylgroups)and

thehydroxylgroupsinphenolics.Wehavereportedthe

observa-tionofH bondinginteractionsbetweenquercetinandNADESin

previousstudies[44]

Chromatographicprofilesprovidebasicinformationabout

spe-cificgroupsofcompoundsbut,mostimportantly,cancharacterise

thechemicalcompositionofasampleinaholisticway.Infact,that

istheparadigmofmetabolomics;aimingattheunbiased

analy-sisofallofthemetaboliteswithinanorganism.Inordertofully

takeadvantageofalloftheinformationprovidedbythisprofiling

method,itisnecessarytousebiometricmethodssuchas

multivari-atedataanalysis(MVDA)andmultivariateimageanalysistobeable

toidentifythesimilaritiesanddifferencesbetweenthemeasured

profilesandthencombinethesewithotherobservations,including

themetabolicchangestriggeredbydiseasesorrelatedtoresistance againstherbivores

Allchromatographicprofilingmethodsrequirethe normalisa-tionandalignmentofsignalspriortoMVDA.Forthenormalisation, threecontrolsamples(inthisstudyamethanolextractwasused) werespottedalongsidetheothersamplesoneachplate.The inten-sityateachRfvalueofthesampleswerenormalisedtoamethanol extractinordertominimisethevariationofreplicateson differ-entplates.ThisnormalisationimprovedthequalityoftheMVDA dataquality (Fig.S1) Therecently-developedopen-source soft-ware,rTLC,wasusedforalignmentwhich offersa standardised procedureforimageprocessingandthevisualisationtoolsthatare requiredtocompareHPTLCfingerprintsviadifferentpattern recog-nition andpredictiontechniques[32].Theprocesseddata were furtheranalysedbyPCAandOPLS

ThePCAdataofginkgolidesandginkgophenolicsinG.biloba leavesisshowninFig.2.Nofurtheranalysisoftheginkgolicacids

inNADESextractsofG.bilobaleaveswasperformedduetotheirlow

Trang 7

Fig 3. Score plots of principal component analysis (PCA) of data corresponding to ginsenosides in Panax ginseng leaves (a) and stems (b) obtained from HPTLC chromatograms using PC1 and PC2 comparing various natural deep eutectic solvents (NADES) extracts and methanol extracts Orthogonal partial least square-discriminant analysis (OPLS-DA) score plots of ginsenosides in P ginseng leaves (c) and stems (d) The numbering of the extracts is the same as in Fig 2

yieldasshowninFig.1c.InthePCAscoreplotofG.bilobasamples,

NADESextractswereclearlydistinctfromthemethanolextractbut

therewasnosignificantdifferenceamongsttheNADESsolvents

Ifany,inthecaseofphenolics(Fig.2b),malicacid-choline

chlo-ride(N1)andglycerol-proline-sucrose(N6)appearedtobecloserto

themethanolextractsthantheotherNADESextracts.Asupervised

MVDA,OPLS-DA,wasemployedtoobtainamoredetailed

compar-isonbetweenboththemethanolandNADESextracts,includingall

ofthesixtestedNADES.Thisshowedaclearseparationbetween

methanoland NADESextracts(Fig.2d).For theidentificationof

thecontributingmetabolites,anSplotwasusedanditrevealed

thatmethanolextractedhigheramountsofmostmetabolites.All

ofthetestedginkgolides,bilobalide(Rf 0.447),ginkgolidesA(Rf

0.361),B(Rf0.266)andC(Rf0.114)wereextractedlessefficiently

withNADES(Fig.S2a).TheHPTLCanalysisofphenolicsinG.biloba

leavesalsoacknowledgedthatmethanolwasmoreefficientthan

NADES,forexample,forchlorogenicacid(Rf0.52),rutin(Rf0.352)

andquercetin(Rf0.99)(Fig.S2b)

InthecaseofP.ginsengleavesandstems,thereweredifferences amongsttheextractionprofilesobtainedwithmethanol,butalso amongsttheNADESextracts(Fig.3a,b).Thefirstclusterconsisted

ofthemethanolextracts,thesecondofmalicacid-cholinechloride (N1)andmalicacid-glucose(N2),andthethirdgroupedtogether thethreeremainingNADES,cholinechloride-glucose(N3),malic acid-proline(N4) and glycerol-proline-sucrose (N6), implying a similarityintheirchemicalprofiles.Extractsmadewith glucose-fructose-sucrose(N5)formedafourthcluster(Fig.3aandb).To comparetheNADESandmethanolextracts,OPLS-DAwasapplied

totheP.ginsengsamples(Fig.3candd)andtheresultsshowed thatallofthesevenanalysedginsenosidesweremoreefficiently extractedfrombothP.ginsengleavesandstemswithNADES(Fig S3)

Apartfromtheirchemicalcomposition,anotherfactorthathas

agreatinfluenceonthephysicochemicalpropertiesofNADESis theirwatercontent[45].Oneofthepositiveeffectsofincreasing thewatercontentisadecreaseintheirviscosity;oneofthefeatures

Trang 8

Fig 4.Orthogonal partial least square-discriminant analysis (OPLS-DA) score plots of different natural deep eutectic solvents (NADES) extracts (a), OPLS score plots of various water contents (0–40%, w/w) (b) and shared-and-unique-structures (SUS)-plots (c) of ginkgolides and ginkgo phenolics in Ginkgo biloba leaves, and ginsenosides in Panax ginseng leaves and stems SUS plots correlate the two OPLS-DA models with the X-axis of NADES composition and OPLS of water contents as Y-axis The numbering of the extracts in Fig 4 a and b is the same as in Fig 2 The numbering of the identified compounds is the same as in Fig 1

thathinderstheiruseasextractionsolvents.Toevaluatetheeffect

ofthewaterratio,differentamountsofwaterwasadded(0–40%,

w/w)tothetwoNADESthathadthehighestextractionyieldsfor

eachplantinthefirstexperiment.Theextractswereanalysedusing

HPTLC-MVDA

ThecontentofginkgolidesandphenolicsinG.bilobaextracts

preparedwithmalicacid-cholinechloride(1:1)(N1)and

glycerol-proline-sucrose (9:4:1) (N6) with varying water ratios were compared.ThedataobtainedfromtheHPLTCchromatograms (X-data)werecombinedwiththewatercontent(Y-data)toevaluate theeffectofthewaterpercentage(w/w)onthetestedNADES.Two differentOPLSmodelswiththewatercontentorcompositionof NADESasY-dataweresetup(Fig.4a,b).Inthescoreplotofthe OPLSmodeling,thetwoselectedNADESextractswereclearly

Trang 9

apartfromthedifferentchemicalcompositionsofN1andN6,the

watercontentalsohada largeeffectontheextractionprofiles

ThesetwoOPLSmodels(NADEScompositionofN1andN6,and

watercontent)wereintegratedbyashared-and-unique-structures

(SUS)-plot,in whichdiagonally-alignedmetabolitesareofequal

importanceand sharedbythetwomodels,andthemain factor

influencing extractionyieldof each metabolite canbededuced

(Fig.4c) IntheSUS-plot,theeffectof individualfactors(X-axis

forNADESchemicalcompositionsandY-axisforwatercontent)

wereeasilydistinguishedfor eachmetabolite Asobserved,the

twometabolitesthataremostaffectedbytheNADEScomposition

changeswereginkgolideBandchlorogenicacid,thoughvery

dif-ferently,i.e.,glycerol-proline-sucrose(N6)extractedthehighest

amountofginkgolideBbuttheleastamountofchlorogenicacid

ThewatercontentgreatlyinfluencedNADESextractionyieldsas

seenontheY-axisintheSUS-plot(Fig.4c).Thiswasparticularly

noticeableinthecaseofrutin

Panaxginsengleavesand stemswereextractedwiththetwo

mostefficientNADES,malicacid-cholinechloride(N1)andmalic

acid-glucose(N2),withvaryingvolumesofaddedwaterandthen

analyzsedbyOPLSandSUS-plot,similarlytotheG.bilobasamples

Interestingly,asseeninFig.4,theyieldofthesevenginsenosides

wereinfluencedinadifferentway,eventhoughtheirstructural

differencesareminimal.ThehighestyieldofginsenosidesRg3and

Rg2inbothP.ginsengleavesandstemswereobtainedwithmalic

acid-glucose(N2)whilstmalicacid-cholinechloride(N1)yielded

themostginsenosideRb1fromP.ginsengstems(Fig.4c).Allseven

ginsenosidesofP.ginsengleavesandsixginsenosidesofP.ginseng

stems(exceptforginsenosideRb1)werebestextractedwithNADES

withthehighestaddedwatercontent(Fig.4c)

4 Conclusion

Todevelop a reliableanalytical method for NADESextracts,

aHPTLC-based methodwasemployed.Thismethodwastested

ontwo well-known medicinalplants and proved tobe ableto

deliverreproducible chemicalprofilesfromtheNADESextracts

Theresultsverifiedthattheyieldofbioactivecompoundsobtained

withsixdifferenttypesofNADESissimilartothatofmethanol

in all cases with only one exception The application of

mul-tivariate analysis revealed, however, some clear differences in

extractionselectivityamongstthedifferentNADES.Theaddition

ofwatertotheNADEShadalargeeffectontheefficiencyoftheir

extractionfor theselectedcompounds,increasingtheiryield in

general.Maximum amounts of ginkgolides, phenolics and

gin-senosideswereobtainedwithanadditionofapproximately20%

water to theNADES It is worth noting that themost striking

differencebetween the methanol and NADES extracts wasthe

significant lack in ginkgolic acids in the NADES extracts This

is very promising for further studies, since it suggests

poten-tialfor obtainingpracticallyginkgolic acid-freepreparationsfor

pharmaceuticaluse

Allof the resultsobtainedin this studyshow NADES tobe

promisingextractionsolvents.Adeeperknowledgeofthe

theo-reticalbasisfortheextractionmechanismoftheNADESandtheir

interactionwithsoluteswouldgreatlyfacilitatethedevelopmentof

futureapplications.Asidefromthis,theHPTLC-analyticalmethod

describedherewillbeausefultoolforthisprocess

Acknowledgments

WethankMrDickBruynzeelinBCONInstrument(Sint

Anna-land,theNetherlands)fortechnicalsupportforHPTLCexperiments

andDrEricaG.Wilsonforallvaluablescientificdiscussion

Appendix A Supplementary data

Supplementarymaterialrelatedtothisarticlecanbefound,in theonlineversion, atdoi:https://doi.org/10.1016/j.chroma.2017 12.009

References

[1] P.T Anastas, M.M Kirchhoff, Origins, current status, and future challenges of green chemistry, Acc Chem Res 35 (2002) 686–694.

[2] S Armenta, S Garrigues, M de la Guardia, Green analytical chemistry, TrAC

27 (2008) 497–511.

[3] L.S Chua, A review on plant-based rutin extraction methods and its pharmacological activities, J Ethnopharmacol 150 (2013) 805–817 [4] R Murga, R Ruiz, S Beltran, J.L Cabezas, Extraction of natural complex phenols and tannins from grape seeds by using supercritical mixtures of carbon dioxide and alcohol, J Agric Food Chem 48 (2000) 3408–3412 [5] M.C Henry, C.R Yonker, Supercritical fluid chromatography, pressurized liquid extraction, and supercritical fluid extraction, Anal Chem 78 (2006) 3909–3915.

[6] H.H Wijngaard, M Ballay, N Brunton, The optimisation of extraction of antioxidants from potato peel by pressurised liquids, Food Chem 133 (2012) 1123–1130.

[7] M Letellier, H Budzinski, L Charrier, S Capes, A.M.J Dorthe, Optimization by factorial design of focused microwave assisted extraction of polycyclic aromatic hydrocarbons from marine sediment, Fresenius J Anal Chem 364 (1999) 228–237.

[8] C Pronyk, G Mazza, Design and scale-up of pressurized fluid extractors for food and bioproducts, J Food Chem 95 (2009) 215–226.

[9] H Zhao, S.Q Xia, P.S Ma, Use of ionic liquids as ’green’ solvents for extractions, J Chem Technol Biotechnol 10 (2005) 1089–1096.

[10] P Moriel, E.J García-Suárez, M Martínez, A.B García, M.A Montes-Morán, V Calvino-Casilda, M.A Ba ˜ nares, Synthesis, characterization, and catalytic activity of ionic liquids based on biosources, Tetrahedron Lett 51 (2010) 4877–4881.

[11] W.L Hough, M Smiglak, H Rodríguez, R.P Swatloski, S.K Spear, D.T Daly, J Pernak, J.E Grisel, R.D Carliss, M.D Soutullo, J.H Davis Jr, R.D Rogers, The third evolution of ionic liquids: active pharmaceutical ingredients, New J Chem 31 (2007) 1429–1437.

[12] A.P Abbott, G Capper, D.L Davies, R.K Rasheed, V Tambyrajah, Novel solvent properties of choline chloride/urea mixtures, Chem Commun (2003) 70–71 [13] B Tang, H Zhang, K.H Row, Application of deep eutectic solvents in the extraction and separation of target compounds from various samples, J Sep Sci 38 (2015) 1053–1064.

[14] E.L Smith, A.P Abbott, K.S Ryder, Deep eutectic solvents (DESs) and their applications, Chem Rev 21 (2014) 11060–11082.

[15] T Gorke, F Srienc, R.J Kazlauskas, Hydrolase-catalyzed biotransformations in deep eutectic solvents, Chem Commun 138 (2008) 1235–1237.

[16] H Zhao, G.A Baker, S Holmes, Protease activation in glycerol-based deep eutectic solvents, J Mol Cat B: Enzym 72 (2011) 163–167.

[17] Y.H Choi, J van Spronsen, Y Dai, M Verberne, F Hollmann, I.W.C.E Arends, G.-J Witkamp, R Verpoorte, Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol 156 (2011) 1701–1705.

[18] Y Dai, J van Spronsen, G.-J Witkamp, R Verpoorte, Y.H Choi, Natural deep eutectic solvents as new potential media for green technology, Anal Chim Acta 766 (2013) 61–68.

[19] Y Dai, G.-J Witkamp, R Verpoorte, Y.H Choi, Natural deep eutectic solvents

as new extraction media for phenolic metabolites in safflower, Anal Chem 85 (2013) 6272–6278.

[20] M Nam, J Zhao, M Lee, J Jeong, J Lee, Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: application to flavonoid extraction from Flos sophorae, Green Chem 17 (2015) 1718–1727 [21] Z Wei, X Qi, T Li, Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra performance liquid chromatography, Sep Purif Technol 149 (2015) 237–244.

[22] Y Dai, E Rozema, R Verpoorte, Y.H Choi, Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents, J Chromatogr A 1434 (2016) 50–56.

[23] K Radosevic, N Curko, V.G Srcek, M.C Bubalo, M Tomaˇsevic, K.K Ganic, I.R Redovnikovic, Natural deep eutectic solvents as beneficial extractants for enhancement of plant extracts bioactivity, LWT -Food Sci Technol 73 (2016) 45–51.

[24] T Bosiljkov, F Dujmic, M.C Bubalo, J Hribar, R Vidrih, M Brncic, E Zlatic, I.R Redounikavic, S Jokic, Natural deep eutectic solvents and ultrasound-assisted extraction: green approaches for extraction of wine lees anthocyanins, Food Bioprod Process 102 (2017) 195–200.

[25] K.M Jeong, M.S Lee, M.W Nam, J Zhao, Y Jin, D.K Lee, S.W Kwon, J.H Jeong,

J Lee, Tailoring and recycling of deep eutectic solvents as sustainable and efficient extraction media, J Chromatogr A 1424 (2015) 10–17.

[26] L Piemontese, F.M Perna, A Logrieco, V Capriati, M Solfrizzo, Deep eutectic

Trang 10

determination of ochratoxin A in wheat and derived products, Molecules 22

(2017) 121–130.

[27] M.A Farajzadeh, M.R.A Mogaddam, M Aghanassab, Deep eutectic

solvent-based dispersive liquid-liquid microextraction, Anal Methods 8

(2016) 2576–2583.

[28] R.B Cody, J.A Laramee, H.D Durst, Versatile new ion source for the analysis of

materials in open air under ambient conditions, Anal Chem 77 (2005)

2297–2302.

[29] G.J van Berkel, B.A Tomkins, V Kertesz, Thin-layer

chromatography/desorption electrospray ionization mass spectrometry:

investigation of goldenseal alkaloids, Anal Chem 79 (2007) 2778–2789.

[30] G Morlock, W Schwack, Coupling of planar chromatography to mass

spectrometry, TrAC 29 (2010) 1157–1171.

[31] S.C Cheng, M.Z Huang, J Shiea, Thin layer chromatography/mass

spectrometry, J Chromatogr A 19 (2011) 2700–2711.

[32] D Fichou, P Ristivojevi ´c, G.E Morlock, Proof-of-principle of rTLC, an

open-source software developed for image evaluation and multivariate

analysis of planar chromatograms, Anal Chem 88 (2016) 12494–12501.

[33] T.A van Beek, P Montoro, Chemical analysis and quality control of Ginkgo

biloba leaves, extracts, and phytopharmaceuticals, J Chromatogr A 11 (2009)

2002–2032.

[34] S Shibata, O Tanaka, M NagaI, T Ishit, Studies on the constituents of

Japanese and Chinese crude drugs XII Panaxadiol, a sapogenin of ginseng

roots, Chem Pharm Bull (Tokyo) 11 (1963) 762–765.

[35] J Huang, X.H Tang, T Ikejima, X.J Sun, X.B Wang, R.G Xi, L.J Wu, A new

triterpenoid from Panax ginseng exhibits cytotoxicity through p53 and the

caspase signaling pathway in the HepG2 cell line, Arch Pharm Res 31 (2008)

323–329.

[36] D.H Kim, Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng, J Ginseng Res 36 (2012) 1–15.

[37] J Yang, J Guo, J Yuan, In vitro antioxidant properties of rutin, LWT-Food Sci Technol 41 (2008) 1060–1066.

[38] CAMAG HPTLC methods for the identification of medicinal plants Available

at http://www.camag.com/laboratory/methods/identification.html [39] China Pharmacopoeia Committee, Pharmacopoeia of the People’s Republic of China, Chemical Industry Press, Beijing, 2005.

[40] E Reich, V Widmer, Plant analysis 2008 – planar chromatography, Planta Med 75 (2009) 711–718.

[41] G Morlock, Background mass signals in TLC/HPTLC-ESI-MS and practical advices for use of the TLC-MS interface, J Liq Chromatogr Relat Technol 37 (2014) 2892–2914.

[42] H.-R Adhami, U Scherer, H Kaehlig, T Hettich, G Schlotterbeck, E Reich, L Krenn, Combination of bioautography with HPTLC-MS/NMR: a fast identification of acetylcholinesterase inhibitors from Galbanum dagger, Phytochem Anal 24 (2013) 395–400.

[43] M Waksmundzka-Hajnos, J Sherma, T Kowalska, Thin Layer Chromatography in Phytochemistry, CRC Press, Boca Raton, 2008, pp 3–14 [44] Y Dai, R Verpoorte, Y.H Choi, Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius), Food Chem 159 (2014) 116–121.

[45] Y Dai, G.-J Witkamp, R Verpoorte, Y.H Choi, Tailoring properties of natural deep eutectic solvents with water to facilitate their application, Food Chem.

187 (2015) 14–19.

Ngày đăng: 31/12/2022, 09:41