Headspace in-tube extraction (HS-ITEX) and solid phase microextraction (HS-SPME) sampling, followed by gas chromatography-mass spectrometry (GC–MS), are widely used to analyze volatile compounds in various food matrices.
Trang 1j ou rn a l h om ep a ge :w w w e l s e v i e r c o m / l o c a t e / c h r o m a
Pascal Fuchsmann∗, Mireille Tena Stern, Patrick Bischoff, René Badertscher,
Katharina Breme1, Barbara Walther
Agroscope, Schwarzenburgstrasse 161, CH-3003 Berne, Switzerland
a r t i c l e i n f o
Article history:
Received 25 February 2019
Received in revised form 10 May 2019
Accepted 10 May 2019
Available online 22 May 2019
Keywords:
In-tube extraction
Vacuum-transfer in trap
Reduced pressure sampling
Dairy matrix
Response surface methodology
GC–MS
a b s t r a c t Headspacein-tubeextraction(HS-ITEX)andsolidphasemicroextraction(HS-SPME)sampling,followed
bygaschromatography-massspectrometry(GC–MS),arewidelyusedtoanalyzevolatilecompoundsin variousfoodmatrices.Whiletheextractionefficiencyofvolatilecompoundsfromfoodstuffsiscrucialfor obtainingrelevantresults,theseefficiencyoftheseextractionmethodslimitedbytheirlongextraction timesandrequirementsforlargesamplequantity.Thisstudyreportsonthedevelopmentand appli-cationofanewextractiontechniquebasedonHS-ITEXhardware,whichimprovestheextractionrate andcapacitybyoperatingunderreducedpressure,calledDynamicHeadspaceVacuumTransferIn-Trap Extraction(DHS-VTT).TheresultsofthestudyindicatethatDHS-VTTimprovestheextractionofthe targetcompounds.Theareaofthemassspectrometersignalforeachcompoundcanbeupto450times moreintensethantheHS-SPMEandHS-ITEXtechniquesperformedinthesameexperimentalconditions
ofextractiontemperatureandtime.DHS-VTTrunsinautomatedmode,makingitpossibletoworkwith smallersamplequantityandalsofavorstheHSextractionofallvolatilecompounds.Inaddition,the nec-essarymodificationstotheinstallationwerecheapandthelifeofanITEXtrapisupto10timeslonger thananSPMEfibre
©2019TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND
license(http://creativecommons.org/licenses/by-nc-nd/4.0/)
1 Introduction
In food and flavor analytics, maintaining sample quality is
a significant challenge throughout the analytical workflow A
commonlyused methodfor performing samplingof foodis by
headspace(HS)techniques.Althoughtheyare“clean”techniques
withrespecttotheworkingenvironmentandinstallations,from
ourexperiencetheyhave severaldrawbacks dependingonuse
suchas:Extendedheattreatmentandextractiontime,whichcan
resultinartifactformation,changeofthemolecularstructure,and
evendegradationofthesample.AutomatedHS-microextraction
samplingtechniquesperformextractionandinjectionintothegas
chromatograph(GC)inasinglestep,butoftenresultina
discrimi-nativetransferofcompoundsfromthesampleintotheheadspace
∗ Corresponding author.
E-mail address: pascal.fuchsmann@agroscope.admin.ch (P Fuchsmann).
1 Current address: ELSA-Mifroma Group, CH-1470 Estavayer-le-Lac, Switzerland.
Phasepartitioncoefficientsair-water(Kaw),sorbent-air(Ksorb-a), andsorbent-water(Ksorb-w)arethethreefactorsthatinfluencethe phasedistributionduringtheextractionforasystemin equilib-rium[1 Headspacesolid-phasemicroextraction(HS-SPME)isa cheap,simple andsensitiveautomatedtechnique forextracting volatileorganiccompounds(VOCs)fromacomplexmatrix with-out specific sample preparation However, ourown experience showsthatit isverydifficulttomakerobustandaccurate ana-lyticalmethodsusingHS-SPME.Toovercomecertaindrawbacksof HS-SPME,andadddynamicandautomatedfeaturesatthesame time,‘in-tubeextraction’ (ITEX)wasintroducedin 2006byCTC AnalyticsAG(Zwingen,Switzerland).Thetechniqueisgenerally operatedusingamultifunctionalautosampler.HS-ITEXisa solvent-lessdynamicHSmicroextractiontechniquederivedfromseveral othersimilartechniques(suchasSPMEandstirbarsorptive extrac-tion(SBSE))listedanddescribedbyJochmannetal.[2 HS-ITEXis
asequentialextractionbasedonprogressivedilutionand extrac-tionoftheheadspaceonthesample.Thisextractiontechniqueis relatedtothemultipleheadspaceextractionmethod(MHE)[3–6]
https://doi.org/10.1016/j.chroma.2019.05.016
0021-9673/© 2019 The Authors Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4 0/ ).
Trang 2GC/MS Detection Parameters for the Investigated Compounds and Validation Parameters of the DHS-VTT Method.
NA: Not available.
Trang 3andprovidesaninterestingalternativetoHS-SPME; ithasbeen
[2,7–10].AnothersimilartechniquedevelopedbySmartNoseSA
(Marin-Epagnier,Switzerland),InsideNeedleDynamicExtraction
(INDEX),usesthesameconceptofextractionasHS-ITEX,and
fur-therHSextractiontechniqueshavebeenextensivelyreviewedin
theliterature[11].Improvementofthedifferentparametersofthe
HS-ITEXisrequiredtoachieveadequatesignalsthroughoptimized
extractionandthermaldesorption[7,12].TheHS-ITEXkey
param-etersarethenatureofthesorbentmaterial,thenumberofstrokes
(accordingtotheliterature:between20and120[2,3,8,10,13]),the
extractionspeed,thedesorptionspeed,thesample,thetrapand
syringetemperature,andtheheadspacevolumeextracted.Many
commercialextractionpolymerswereevaluatedbyLaaksetal.[14]
andareavailableonthemarket.Thetrapcanalsobefilledwith
noncommercialsorbents,suchasmultiwalledcarbonnanotubes
orpolystyrene-divinylbenzene[1,9,15].Thechoiceofthesorbent
materialismadebasedonthetargetmoleculetobeextracted.An
innovativetechniquedevelopedbyBarajasetal.[16]alsomakes
itpossibletoevaluateandcharacterize sorbentsbyinversegas
chromatographycolumn
Dependingonthematrixanddesiredresults,improving
differ-entparametersmayberequired,makingtheoptimizationofthe
technologyverycomplexcomparedtoHS-SPME[17]
Thegoalofthisstudywastodevelop andoptimizea
repro-ducible,robust,andsensitiveextractionmethodthatreducesthe
drawbacksoftraditionalheadspaceextractiontechniques.Anew
techniqueisproposedthatcombinesfeaturesofHS-ITEXand
prin-ciplesofvacuum-HS-SPMEandvacuumdistillationcoupledwith
gaschromatography[18–21]:DynamicHeadspaceVacuum
Trans-ferInTrapExtraction(DHS-VTT).Thenewmethodaimedtoavoid
strokes,thelimitedinjectionvolumeandprovidedynamic
extrac-tionundervacuumconditions.Severalpublicationshavereporteda
significantimprovementoftheextractionunderreduced-pressure
usingso-calledvacuumHS-SPME[22–24].However,thistechnique
canuptonowonlybeusedmanually.Toaddressthislack,the
currentmethodwasdesignedtofunctionwithanautomaticmode
Thispaperdiscussesthedevelopmentandapplicationofour
newextractiontechnique,DHS-VTTusingamodelofanartificially
constructedmatrix(ACM).Weassessthemethod’ssensitivity,and
itssuitabilityforthequalitativeandquantitativeanalysisofabroad
rangeofvolatilecompounds,smallsamplevolume,andlarge
sam-pleseries.ThesuitabilityandefficiencyofDHS-VTTwereverified
bycomparisontoHS-SPMEandHS-ITEX,aswellasanalysisofACM
andplainyoghurtusingparameterscommonlyfoundinthe
litera-tureforHS-ITEXandHS-SPME[25]
2 Experimental
2.1 Materialsandmethods
2.1.1 Chemicalsandsamples
Therelevantchemicalcompoundswerepurchasedfrom
Sigma-AldrichChemieGmbH(Buchs,Switzerland),R.C.Treatt&Co.Ltd
(Suffolk, UnitedKingdom), and Caesar&Loretz GmbH(Hilden,
Germany):Hexan-1-ol(Aldrich471402),2-Phenylethanol(Aldrich
77861),Butan-2-one(Aldrich360473),Butane-2,3-dione(Aldrich
B85307), 3-Hydroxybutan-2-one (Aldrich W200808),
Heptan-2-one (Aldrich W254401), Undecan-2-one (Aldrich W309311),
Ethyl butanoate (Aldrich W242705), Ethyl 3-methylbutanoate
(Aldrich W246301), Ethyl hexanoate (Aldrich W242906), Ethyl
decanoate (Aldrich W243205),␥-Butyrolactone (Aldrich 90970),
␦-Decalactone (Aldrich W236101), (Z)-6-Dodecen-4-olide (R.C
Treatt 62185), Butanal (Aldrich W221902), 3-Methylbutanal
Table 2
Two-level full factorial design of experiment for the method validation.
Changed parameters: sample temperature (37 ◦ C–80 ◦ C) and extraction time (5–60 min).
seeTable1 alldilutedtoaconcentrationof10mgL−1in20mL
ofpolyethyleneglycol200.Thealkaneswereseparatelydilutedin Miglyol® 812atthesameconcentration.Polyethyleneglycol200 waschosenbecauseitisagoodsolventfortheselectedcompounds anddoesnotreactwiththevolatilecompoundspresentintheACM Thecompoundsthatarenotsolubleinpolyethyleneglycol200(the alkanes)weredissolvedinMiglyol®812whichalsosimulatesthe lipidpartofadairymatrix.Thesemixtureswerestoredat−40◦C
untilanalysis
2.1.4 Samplepreparation ACMstandardsolutions(25Lofeachstandard)wasdiluted withH3PO44%indeionizedwateratpH1.3(totalsamplevolumeof twomillilitres)andplacedin20mLHSvials(Interchim,Montluc¸on, France) The acidification of the sample helps to promote the volatilityofcarboxylicacids.Phosphoricacidisnotvolatileand willnotinterfereintheanalyseseither.Thevialswerehermetically sealedusingabluesilicone/Teflonseptum(Interchim).Calibration curvesweremadebydilutingthestocksolutionbyafactoroftwo foraminimumofsevenpoints.Tofacilitatedataprocessing,the43
Trang 4Comparison between DHS-VTT with different sorbent materials, HS-ITEX TTA and HS-SPME for the investigated compounds.
Trang 5C13andC20(Tables1and3)
Forrealdairy analyses, two millilitresofhomogenizedplain
yoghurtwereplacedin20mLHSvials(Interchim)andtheywere
hermetically sealed using a bluesilicone/Teflon septum
(Inter-chim)
2.1.5 Modificationofthegasdistributionblock
Theoriginaltwo-wayaluminumgasdistributionblockofthe
autosamplerMPS2(Gerstel,Sursee,Switzerland)wasreplacedby
a three-wayblock printed ona 3DTouch Pegasus printer(Full
SpectrumLaser,LasVegas,US)with“UniversalClearResin”(Full
spectrumLaser)(Fig.1).ThepolymerwassolidifiedusingUV
expo-sureafterprinting.Thismodificationmakesitpossibletoswitch
thesolenoidvalvebetweenthevacuumpumpandtheinertgasto
extractvolatilecompoundsfromthesamplewiththevacuumand
desorbthemintotheinjectorusinganinertgasflow
2.1.6 Pressuremeasurement
In order to verify the hermeticityof thevial, a pressure of
10mbarwasappliedinanemptyvialusingavacuumpumpBuchi
V-300equippedwith a pressurecontrol interfaceI-300 (Büchi,
Flawil,Switzerland).Thevialwasconnectedtoapressuresensor
PAA-27(Keller,Winterthur,Switzerland)andameasuringdevice
Almemo2590(Ahlborn,Holzkirchen, Germany).Thepumpwas
thenstoppedandthesignalwasrecordedsimultaneouslyinacsv
fileandprocessedwithExcel
EvaluationofthepressureinthevialduringHS-ITEXand
DHS-VTT extraction was carried out using the same equipment as
describedabove.Themeasuringdevicewasconnectedtoa
nee-dlewhichpiercestheseptumofthevialsatthesametimethatthe
extractionwasperformed.InstrumentationforGC–MSanalysis
TheanalyseswerecompletedusinganMPS2autosampler
(Ger-stel)onanAgilent7890BGCsystemcoupledtoanAgilent5977A
massselectivedetector(MSD)(AgilentTechnology,SantaClara,
CA,USA).Theheadspacewasextractedaccordingtothe
experi-mentaldesign(Table2).BoundvolatilesweredesorbedinaPTV
oftypeCIS4(Gerstel).Volatilecompoundswereseparatedona
TRB-FFAPfusedsilicacapillarycolumn(100%PEGwith
nitrotereph-thalicacid,bondedandcrosslinked,60m×0.32mm×1.0mfilm;
Teknokroma,Barcelona,Spain)withheliumasthecarriergasata
constantflowof2.5mLmin−1(30cmsec−1)
Theoventemperatureprogramwasasfollows:fiveminutesat
40◦C,thenheatedto220◦C ata rateof5◦Cmin−1,witha final
holdtimeof34mintomakeatotalruntimeof75min.TheMS
settingswereasfollows: thetransferlineat 230◦C,thesource
temperatureat230◦C,thecompoundsmonitoredinSCANmode
between29amuand250amuwithoutsolventdelay,andinSIM
modeforthemethoddetectionlimits(MDLs)andthecalibration
curves.TheautosamplerwascontrolledusingtheCycleComposer
V.1.5.4(CTCAnalytics,Zwingen,Switzerland)andthePTV
injec-torwithMaestro1softwareV.1.4.8.14/3.5(Gerstel).Thedetector
responsesignalswereintegratedusingMasshunterquantitative
analysissoftwareversionB.08.00(Agilent).TheNIST/EPA/NIHmass
spectrallibrary(NIST14)version2.2(NIST,Gaithersburg,MD,USA)
wasusedforpeakidentification
2.2 Headspacein-tubeextraction(HS-ITEX)
TheITEX-2 option (Brechbühler,Schlieren, Switzerland)was
usedontheMPS2autosampler.Theheadspacewasextractedusing
aTTAtrapwith70extractionstrokes(volumeof1.3mL/stroke,
extractionflowrateof100Ls−1).ACMandyoghurtsampleswere
notconditionedforthisexperiment.Thesyringetemperaturewas fixedat100◦C,theITEXtrapat35◦C,andthesampleat55◦C.The boundvolatilesweredesorbedfromthesorbentmaterialat240◦C
ina CIS4injectorequippedwitha glasslinerfilledwithTTAat
10◦C.Avolumeof1.3mLwastransferredintotheinjectorata des-orptionflowrateof100Ls−1,afterhavingwaited30s(plunger down)intheventmode(50mLmin−1,setpressure:0kPa).The injectorwasthenheatedatarateof12◦Cs−1to240◦C.Thepurge flowtosplitventwassetat300mLmin−1after5min.After injec-tion,theITEXneedlewasreconditionedaccordingtothesupplier’s temperaturerecommendationfor15minunderanitrogenflowof
220mLmin−1(measuredat35◦C)
2.2.1 Headspacesolid-phasemicroextraction(HS-SPME)
ToobtainarepresentativeevaluationoftheVOCsofthesamples, the VOCs were extracted using a 1cm 50/30m divinylben-zene/carboxen/polydimethylsiloxane(DVB/CAR/PDMS)StableFlex fibre (Supelco, Bellefonte, PA, USA) The fibre was conditioned accordingtothesupplier’srecommendations(270◦Cfor60min) ACMandyoghurtsampleswerenotconditionedforthis experi-ment.Thesampleheadspacewasextractedfor30minat55◦Cwith
anagitationrateof250rpm.Theboundvolatilesweredesorbedfor
60sat240◦Cintheinjector,whichwasinthesplitlessmodefor60s beforethesplitvalvewasopened(splitflow=80mLmin−1)[25] 2.2.2 Dynamicheadspacevacuumtransferintrapextraction (DHS-VTT)
DHS-VTTrequiresthesameequipmentasHS-SPMEandHS-ITEX methods.Avacuumpumpwithpressurecontrolinterfaceandthe newgasdistributionblockcompletetheinstallation(Fig.2A)
ApieceofcleanedswabTopper®810×10cm(Systagenix,North Yorkshire,UnitedKingdom)wasaddedtothevialtoavoid boil-ingandfoaming.Thesyringetemperaturewasfixedat100◦C,the ITEXtrapat35◦C,andthesampleaccordingtotheexperimental design(Table2).Theextractiontakesplaceasillustrated(Fig.2B) Sampleconditioning:ACMandyoghurtsampleswerenot condi-tionedforthisexperiment.Extraction:Thetrappiercestheseptum and theplungerrises totheupperposition.When theplunger
isintheupperposition,theHSwasextractedundercontinuous reducedpressureusingavacuumpumpBuchiV-300equippedwith
apressurecontrolinterfaceI-300(Büchi)andthegasdistribution blockaccordingtotheexperimentaldesign(Table2)without agi-tation.Drying:Thetrapwasthenremovedfromthesampleandthe solenoidvalveswitchestonitrogen.Sorbentandsyringeweredried underanitrogenstreamfor17minat220mLmin− 1[26] Desorp-tion:ThetrapwasthenintroducedintothePTVinjectorandthe boundvolatilesweredesorbedfromthesorbentfor120switha nitrogenflowof220mLmin−1(fixedat35◦C)at240◦C.ThePTV injectorwasintheventmodeat50mLmin−1and0kPafor120s TheinjectorwasequippedwithaglasslinerfilledwithTTAand cooledwithliquidnitrogenat10◦C.Thetrapwasremovedfrom theinjectorandtheinjectorwasthenheated,atarateof12◦Cs−1,
to240◦C.Thepurgeflowtosplitventwassetat300mLmin−1after
5min.TrapCleaning:Thereconditioningofthetrapwasachieved
inthesamewayasfortheHS-ITEXmethodbycirculatingaflowof nitrogenthroughthetrapattherecommendedtemperaturewith theplungerintheupperposition
2.3 Experimentaldesignandstatistics
Tooptimizeexperimentalparameters,a two-levelfull facto-rial design of theexperiment was performed.Only thesample temperatureandthetimeofextractionwereinvestigatedbecause thesearetheparametersthathavethemosteasilymodifiableand havethegreatestimpactontheextractionofvolatilecompounds Thetemperature of thetrapshouldbekeptas low aspossible
Trang 6Fig 1. Design of the modification of the gas distribution block in polymer (dimension in mm) The block was designed with three ways, one for the nitrogen supply (A), one for the vacuum (B), and the last way was directly connected to the autosampler.
Fig 2. (A) Diagram of the GC–MS instrument with the autosampler (MPS2) and ITEX-2 hardware Connection of the original nitrogen line to the new distribution block (in orange) and the solenoid valve The vacuum and nitrogen lines are coloured green and blue respectively (B) Stages of the extraction process using the DHS-VTT method Sample conditioning, extraction, drying, desorption and trap cleaning steps.
Trang 7Fig 3.Parameter optimization according to the experimental design for DHS-VTT (TTA/CSIII) X-Axis: Sample temperature [ ◦ C] Y-Axis: Extraction time [min] Z-Axis: Total ion count normalized [-] The color variations represent blue for a low signal and red for a high signal.
(withintheconstraintsoftheinstrumentspecificationsandthe
laboratory environment) and the syringe temperature kept at
100◦Ctoexcludewatercondensationduringtheextraction.Three
centrallycomposedDHS-VTTexperimentalplansweredeveloped
Therespectiveresultswereevaluatedandpresentedtoshowthe
areasofeffect.Mosaicplots(Fig.3 whichcanbeinterpretedusing
color,werechosenfor thepresent work,and eachpeakareaof
effectwassmoothedsquarely(smoothingmethod).Intheplots,
theintensityofthepeakareaobservedisdisplayedincolor,from
blue (no signal), through dark and light green, yellow-orange,
and,finally,tored,thelargestandmostintensepeakarea,which
is equivalentto themaximal signal.The mean values of these
measurement rangeswerethecenter of theCentral Composite
design The remaining levels were placed radially around the
centerina2*22experiment,whichcorrespondsgeometricallyto
twosquares,rotatedby45◦intheplanearoundtheircenter.This
designallowsfortheinfluenceoffivelevelsperparameter.Height
points are distributed around the center at the same relative
distance.Intotal,12measuringpointsaremade,thecenterpoint
forthevariabilitybeingmeasuredfourtimes
3 Results and discussion
3.1 Extractionparameters
3.1.1 Pressureintheheadspace
Theeffectivenessofbluesilicone/Teflonseptuminthe
hermetic-ityofvialshasshownthatthepressureremainedstableforaperiod
of10minafterthepumpwasstoppedandthuscanbeconsidered
assufficientlyeffectivefortheanalyses(resultsnotshown)
Thepressuremeasurementsmadeduringtheextraction
accord-ingtotheHS-ITEXmethodshowthattheextractionswerecarried
out above atmospheric pressure due to air expanding in the
vialduringextractionwhenitwasheated.Thesamplewas
pre-paredatatmospheric pressure beforeextractionthen placed in
theautosamplercoolingdevice(4◦C).Thepressureimmediately
decreaseddue tothevolumecontractionoftheairinthevials
Thenthevialwasplacedintheheatingagitator(55◦C),andthe
pressureincreasedabovetheatmosphericpressure(Fig.4,red
sig-nal).Throughoutextraction,thehighpressureremainedconstant
Asaresult,therateofevaporationofthecompoundsdecreasesand
theextractionefficiencyofvolatilecompoundswasthuslower[27]
ThisphenomenonwassimilarduringanHS-SPMEextraction
withoutthestrokeseffect.Withthechangeofthegasdistribution
block,itwaspossibletoautomatetheextractionatreduced
pres-sureinthevialthroughouttheextraction(Fig.4,greensignal).The
Fig 4.The pressure inside the vials during extraction using HS-ITEX (red) and DHS-VTT (green) method at set pressure: 100 mbar.
vacuumobtainedinthevialsgreatlyinfluencedtheextractionof volatilecompounds[22].Apressureabove100mbarwasnolonger sufficientforextractingthecompoundsefficiently(Fig.5).Reduced pressureacceleratedthereleaseofthevolatilecompoundinthe headspace,butalsohasanimpactontheefficiencyofthesorbent Lowpressureoveralongperiodoftimedesorbsthemostvolatile compoundsofthesorbent.Consequently,itwasnecessaryto deter-minetheoptimalconditionsforachievingasuitablecompromise betweenthepressureinthevialandtheextractionrate.The pres-sureeffectsdependedonthevolatilityofthemolecules.Thehighly volatilecompoundsasthepentanewerebetterretainedonthe polymerwhen thepressure inthevialwasnot lessthanabout
50mbar(datanotshown),whileothervolatilecompoundswere moreeasilyextractedatthelowestpossiblepressure.Theeffect
ofthereducedpressureduringextractioncausedanissuealready knownfromthepurgeandtraptechnology—theaccumulationof watervaporinthesystem(needle,syringe,tubes)andartifact for-mation[12,26].Toavoidthis,thetrapandthesyringeweredried underanitrogenflowforatimedeterminedpriortoinjectioninto theinjector
3.1.2 SamplevolumeandHSvolume Testswereconductedusingsamplevolumesof0.5,1, 2and
4mLin20mLHSvials.TheDHS-VTTparameterswerethesame
Trang 8Fig 5. The sum of the peak areas of the 43 target compounds divided into three groups (Y-Axis: Total ion count) as a function of the pressure in the vials, expressed in mbar (set pressure) (X-Axis).
Fig 6. Influence of the sample amount on the total ion count (TIC) MS signal of the
target compounds.
foreachtest.Theamountofthesample,and,consequently,the
numberofvolatilemoleculesavailableinthevialsinfluencedthe
extraction.Whentheamountofthesampledoubled,thetotal
sig-nalincreasedproportionallybyafactorof1.7foragivenextraction
time(Fig.6).Thisdemonstratesthattheextractioncapacityofthe
trapwasnotreached,allowingforquantitativestudiesusinga2mL sample[28,29]
3.1.3 PTVinjectortemperature Lowtemperatureinthelinerhadapositiveimpactonthe recov-eryofvolatilecompounds.Thechangefrom10◦Cto−50◦Cdoes
notshowasignificantimprovementinrecoveryofvolatile com-poundsforgroups2and3.Forreasonsofcostandefficiency,we usedatemperatureof10◦CforthePTV(Fig.7)
3.1.4 Sampletemperatureandextractiontime Theeffectofthesampletemperaturewasevaluatedfor tem-peraturesbetween30and80◦Cusingthedescribedexperimental design(Table2).Increasedtemperatureledtoanincreaseinthe signal for all compounds due toa higher partitioning of com-poundsfromtheaqueousphasetotheheadspace[1 Thehigher thetemperature, thehigher theextraction efficacyfor theless volatilecompounds.Atcertainhightemperatures,thecompounds degradedandtendedtocontaminatetheautosampler,i.e.,water vapor condensed in thetrap,the syringe,and theautosampler tubes.DespitethehydrophobicnatureofTTA,anaccumulationof waterinthetrapcouldresultintheproblemofinjectingwater dropletsintotheGCwiththeinjectionofthecompounds[26]
Fig 7.Influence of the PTV injector temperature on the recovery of the investigated compounds after injection The injector temperature was tested between 20◦C and
−50 ◦ C.
Trang 9Fig 8. Influence of the thermodesorption temperature on the nitrogen flow inside
the ITEX trap.
Witha reduced pressure in thevials, we observed that the
extractionrateaccelerated.For themostvolatilecompounds, a
prolongedextractiontimehadanegativeeffectontherecovery
ofthemolecules[1 Indeed,whenextractiontimewastoolong,
themostvolatilecompoundswerereleasedfromthesorbent.For
themajorityofthemoleculesstudiedinACM,theresultsofthe
experimentshowedanoptimaltimeof30minat55◦C.The
extrac-tionparameterscanbeadaptedaccordingtothemoleculestobe
studied(Fig.3)
3.1.5 Nitrogenflowdesorption
Thenitrogenflowwasoptimizedto220mLmin−1 at35◦Cto
allowforproperdesorptionofthecompoundsfixedtothepolymer
andextractiontocounteractagainstthepressureintotheinjector
duringdesorption.Anexponentialdecreaseinthenitrogenflow
ratewasnotedwhenthetemperatureofthetrapincreased(Fig.8)
Atoo-highflow(>300mLmin−1)sometimescloggedthetrapby
sealingthesorbentmaterial
3.2 ComparisonofHS-SPME,HS-ITEX,andDHS-VTT TheresultsindicatethatDHS-VTTclearlyimprovesthe extrac-tionof volatilecompoundsfroma complex matrixas theACM (Table 3) The peak area can be increased by a factor of 450 for some compounds in comparison with using the HS-SPME method.Incomparison,HS-SPMEextraction,widelyusedin com-mon headspace applications, achieves lower efficiency for all compoundsmeasuredunderthesametemperatureandextraction timeconditions.TheDHS-VTTtechniqueenriches thegasphase rapidlybylimitingthematrixeffectsbecauseofthereduced pres-sureinthevial.Moreover,theconventionalHS-ITEXmethodcannot extracttheleastvolatilecompounds.Theheadspaceisrapidlyina stablestateinHS-ITEX,andthestrokesareinadequatetoextract morevolatilecompounds.ThechoiceofpolymerintheDHS-VTT extractiontrapwasalsoveryimportantforoptimalextraction.The bestcompromiseforthe43compoundsusedinthisstudywasthe TenaxTA/CarbosieveSIIIblend
Theprofilesofthevolatilefractionobtainedforaplainyoghurt using theDHS-VTT,HS-ITEX, and HS-SPME extractionmethods showthattheDHS-VTTmethodwassuitableforthistypeofsample (Fig.9).Theanalysesperformedontheyoghurtconfirmtheresults obtainedwiththeACM.TheHS-ITEXmethodwaseffectiveforthe extractionofhighlyvolatilecompoundssuchasacetaldehydebut didnotextractheaviercompoundsunderthedescribedconditions WiththeHS-SPMEallcompoundsexceptthedecanoicacidcould
beidentified.However,thesignalsweremuchweakerthanwith theDHS-VTTmethod.Thesurfaceareaofthepeakswashigherwith DHS-VTTandahighernumberofcompoundscouldbedetectedin SCANmodeusingthismethod
3.3 PerformanceevaluationofDHS-VTT Performanceevaluationwascarriedoutbydeterminingthe fol-lowingparameters:
• Thelinearity(R2)of themethodwasevaluatedby measuring thetargetcompoundsinsixdifferentconcentrationsintheACM correspondingtotherankscommonlyfoundindairymatrices
Fig 9.Chromatograms corresponding the volatile fraction of plain yoghurt extracted by DHS-VTT, HS-ITEX and HS-SPME methods The chromatographic conditions were given in Section 2.2 Instrumentation for GC–MS analysis (sample temperature 55◦C, extraction time 30 min) Peak numbers correspond to : 1:Acetaldehyde, 2:Acetone, 3:Ethylacetate, 4:Butan-2-one, 5:Butane-2,3-dione, 6:Pentane-2,3-dione, 7:Hexanal, 8:Heptan-2-one, 9:Octanal, 10:3-Hydroxy-butan-2-one, 11:2-Methylpentan-3-ol, 12:2-Hydroxy-3-pentanone, 13:Nonan-2-one, 14:Nonanal, 15:Acetic acid, 16:Propanoic acid, 17:2-Methylpropanoic acid, 18:Undecan-2-one, 19:Butanoic acid, 20:2-Phenylacetaldehyde, 21:Pentanoic acid, 22:Hexanoic acid, 23: 6,10-dimethylundeca-5,9-dien-2-one, 24:2-Phenylethanol, 25:Octanoic acid, 26:Nonanoic acid, 27:
␦–Decalactone, 28:Decanoic acid, 29: ı-Dodecalactone A, Artifact.
Trang 10Fig 10.850 injections of the ACM sample over two weeks in DHS-VTT Y-axis: Sum of the peak areas of the 43 molecules selected Standard deviation 9.6%.
TheR2wasapproximately0.99+/-forallcompoundsexceptfor
␥-butyrolactonewith0.98
• TheMDLofthetargetmoleculeswasestimatedaccordingtothe
USEnvironmentalProtectionAgencyprocedureandEq.(1):
• wheretisthestudent’stvaluewithaconfidencelevelof99%
andsixdegreesoffreedomandScthestandarddeviationofseven
replicatesataconcentrationlevelfeaturingasignal-to-noiseratio
(S/N)ofthreetoone.TheMDLsmeasuredforalkanesrangedfrom
0.036g L−1 to0.822gL−1,forestersfrom0.003gL−1 to
0.071gL−1,foraldehydesfrom0.050gL−1to2.89gL−1,
forketonesfrom0.145gL−1to11.9gL−1,forlactonesfrom
0.130gL−1to0.195gL−1,foralcoholsfrom0.032gL−1to
0.127gL−1,andforthecarboxylicacidsfrom0.741gL−1to
104gL−1(Table1)
• Thereproducibility(RSD%)wasobtainedbydeterminingthe
rela-tivestandarddeviationcalculatedontheanalysesofthesamples
eight times over a period of two weeks Reproducibility was
measuredbetween 2.2 and 33% for allcompounds (Table1)
Reproducibilitywaslowforthecarboxylicacids;theextraction
conditionswerenotoptimizedforthesecompounds
• Theextractionratio(E)ofthemethodwasevaluatedbyextracting
thesamesamplefivetimes.TheEvaluewascalculatedaccording
toZimmermannetal.,byplottingthelogarithmicalpeakareas
againstthenumberofextractionandasimplifiedEq.(2)[30]
Theslopeofthelinearregressionisrepresentedintheequation
bythelog(1-E)
lognf,x=log
ns,0E
TheEvaluerangedfrom1.0%fordodecanoicacidto77.8%for
butan-2-one
• 850injectionsofACMweremadeusingthesameITEXtrap.The
resultsshowthereproducibilityandstabilityoftheanalyses,with
amaximumvariationof9.6%betweenthetwoextremeresults
(Fig.10)
4 Conclusions
ThisnewlydevelopedDHS-VTTtechniqueimprovesthe
extrac-tion of volatile compounds from an ACM by a simple and
inexpensivemodificationoftheautosamplerandbyusing
com-mercialITEXhardware.UsingtheprincipleofDHS-VTTprovidesa
rapidextractionoftargetcompoundswithminimaldamagetothe
sampleandlimitedartifactformation.Workingatreducedpressure increasestheevaporationrateofthecompounds.Extractionunder continuousreducedpressureavoidscreatingasystemin equilib-rium,and,thus,extractionremainsdynamic.Ourresultsshowgood repeatabilityandsensitivityforthemajorityofthetargetmolecules assessed
ComparingtheresultsofextractionbyDHS-VTT(TTA,TGR,CSIII, andTTA/CSIII),HS-ITEX(TTA)andHS-SPME(DVB/CAR/PDMS),we observethatDHS-VTTshowsbenefitsforbothtimeand sensitiv-ityofextractionforvolatilecompounds,includinggroup1,group
2,andgroup3(Table3).Themuchlargeramountsofcompounds extractedwiththeDHS-VTTmethodwouldfacilitatemoreefficient olfactometricanalyses.However,furtherresearchisnecessaryto comparehowrepresentativethedifferentextractionmethodsare forodorstovalidatethedevelopedmethodforolfactometry pro-filing Thiswould also requiredetailed odorrepresentativeness studies[31,32]
Totheauthors’knowledge,nootherpublicationhasreported
onthedevelopmentofthisnewDHS-VTTmethod,whichallowsfor betterextractionoftargetvolatilesusingshorterextractiontimes andlowertemperatures
Notes
Theauthorsdeclarenocompetingfinancialinterest
Acknowledgements
WethankDr.Jacques-OlivierBosset,Dr.BarbaraGuggenbühl, andDr.KathrynJBurtonforhelpfulcommentsonthemanuscript
References
[1] T Hüffer, X.L Osorio, M.A Jochmann, B Schilling, T.C Schmidt, Multi-walled carbon nanotubes as sorptive material for solventless in-tube microextraction (ITEX2)- as factorial design study, Anal Bioanal Chem 405 (2013)
8387–8395, http://dx.doi.org/10.1007/s00216-013-7249-7 [2] M.A Jochmann, X Yuan, B Schilling, T.C Schmidt, In-tube extraction for enrichment of volatile organic hydrocarbons from aqueous samples, J Chromatogr A 1179 (2008) 96–105, http://dx.doi.org/10.1016/j.chroma.2007 11.100
[3] J Zapata, R Lopez, P Herrero, V Ferreira, Multiple automated headspace in-tube extraction for the accurate analysis of relevant wine aroma compounds and for the estimation of their relative liquid-gas transfer rates, J Chromatogr A 1266 (2012) 1–9, http://dx.doi.org/10.1016/j.chroma.2012.10.
015 [4] M.T Suzuki, S Tsuge, T Takeuchi, Gas chromatographic estimation of occluded solvents in adhesive tape by periodic introduction method, Anal Chem 42 (1970) 1705–1708, http://dx.doi.org/10.1021/ac50160a035