1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

A fission matrix based validation protocol for computed power distributions in the advanced test reactor

10 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề A Fission Matrix Based Validation Protocol for Computed Power Distributions in the Advanced Test Reactor
Tác giả Joseph W. Nielsen, David W. Nigg, Anthony W. LaPorta
Trường học Idaho National Laboratory
Chuyên ngành Nuclear Engineering
Thể loại Research Article
Năm xuất bản 2015
Thành phố Idaho Falls
Định dạng
Số trang 10
Dung lượng 2,48 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

The Idaho National Laboratory (INL) has been engaged in a significant multiyear effort to modernize the computational reactor physics tools and validation procedures used to support operations of the Advanced Test Reactor (ATR) and its companion critical facility.

Trang 1

Nuclear Engineering and Design 295 (2015) 615–624

ContentslistsavailableatScienceDirect

j o ur na l h o me pa g e :w w w e l s e v i e r c o m / l o c a t e / n u c e n g d e s

Idaho National Laboratory, 1955 N., Fremont Avenue, PO Box 1625, Idaho Falls, ID 83402, USA

a r t i c l e i n f o

Article history:

Received 1 July 2015

Accepted 30 July 2015

Available online 30 October 2015

a b s t r a c t

TheIdahoNationalLaboratory(INL)hasbeenengagedinasignificantmultiyearefforttomodernize thecomputationalreactorphysicstoolsandvalidationproceduresusedtosupportoperationsofthe AdvancedTestReactor(ATR)anditscompanioncriticalfacility(ATRC).Severalnewprotocolsfor vali-dationofcomputedneutronfluxdistributionsandspectraaswellasforvalidationofcomputedfission powerdistributions,basedonnewexperimentsandwell-recognizedleast-squaresstatisticalanalysis techniques,havebeenunderdevelopment.Inthecaseofpowerdistributions,estimatesoftheapriori ATR-specificfuelelement-to-elementfissionpowercorrelationandcovariancematricesarerequired forvalidationanalysis.Apracticalmethodforgeneratingthesematricesusingtheelement-to-element fissionmatrixispresented,alongwithahigh-orderschemeforestimatingtheunderlyingfissionmatrix itself.TheproposedmethodologyisillustratedusingtheMCNP5neutrontransportcodefortherequired neutronicscalculations.Thegeneralapproachisreadilyadaptableforimplementationusingany multi-dimensionalstochasticordeterministictransportcodethatofferstherequiredlevelofspatial,angular, andenergyresolutioninthecomputedsolutionfortheneutronfluxandfissionsource

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND

license(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1 Introduction

TheIdahoNationalLaboratory(INL)hasinitiatedafocusedeffort

toupgradelegacycomputationalreactorphysicssoftwaretoolsand

protocolsusedforsupportofAdvancedTestReactor(ATR)corefuel

management,experimentmanagement,andsafetyanalysis.This

isbeingaccomplishedthroughtheintroductionofmodern

high-fidelitycomputationalsoftware andprotocols, withappropriate

verificationandvalidation(V&V)accordingtoapplicablenational

standards.Asuiteofwell-recognizedstochasticanddeterministic

transporttheorybasedreactorphysicscodesandtheirsupporting

nucleardatalibraries(HELIOS(StudsvikScandpower,2008),NEWT

(DeHart,2006),ATTILA(McGheeetal.,2006),KENO6(Hollenbach

etal.,1996)andMCNP5(Goorleyetal.,2004))isinplaceatthe

INLforthispurpose,andcorrespondingbaselinemodelsoftheATR

anditscompanioncriticalfacility(ATRC)areoperational

Further-more,acapabilityforrigoroussensitivityanalysisanduncertainty

quantification based on the TSUNAMI (Broadhead et al., 2004)

systemhasbeenimplementedandinitialcomputationalresults

havebeenobtained.Finally,wearealsoincorporatingtheMC21

∗ Corresponding author Tel.: +1 208 526 4257.

E-mail address: joseph.nielsen@inl.gov (J.W Nielsen).

(Suttonetal.,2007)andSERPENT(Leppänen,2012)stochastic sim-ulationanddepletioncodesintothenewsuiteasadditionaltools forV&Vintheneartermandpossiblyasadvancedplatformsfor full3-dimensionalMonteCarlobasedfuelcycleanalysisandfuel managementinthelongerterm

Ontheexperimentalsideoftheeffort,severalnew benchmark-qualitycodevalidationmeasurementsbasedonneutronactivation spectrometryhavebeenconductedattheATRC.Resultsforthefirst three experiments,focusedondetailed neutronspectrum mea-surements within the Northwest Large In-Pile Tube (NW LIPT) wererecentlyreported(Niggetal.,2012a)asweresomeselected resultsforthefourthexperiment,featuringneutronfluxspectra withinthecorefuelelementssurroundingtheNWLIPTandthe diametricallyopposite SoutheastIPT(Niggetal., 2012b).In the currentpaperwefocusoncomputationandvalidationofthefuel element-to-elementpowerdistributionintheATRC(andby exten-siontheATR)usingdatafromanadditional,recentlycompleted, ATRCexperiment Inparticularwepresentamethoddeveloped for estimating thecovariance matrix for thefission power dis-tribution using the corresponding fission matrix computed for theexperimentalconfigurationofinterest.Thiscovariancematrix

is a key inputparameter that is required for theleast-squares adjustmentvalidation methodologyemployedforassessmentof the bias and uncertainty of the various modeling codes and techniques

http://dx.doi.org/10.1016/j.nucengdes.2015.07.049

0029-5493/© 2015 The Authors Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.

Trang 2

616 J.W Nielsen et al / Nuclear Engineering and Design 295 (2015) 615–624

Fig 1.Core and reflector geometry of the Advanced Test Reactor References to core lobes and in-pile tubes are with respect to reactor north, at the top of the figure.

2 Facility description

TheATR(Fig.1)isalight-waterandberylliummoderated,

beryl-liumreflected,light-watercooledsystemwith40fully-enriched

(93wt%235U/UTotal)plate-typefuelelements,eachwith19curved

fuelplates separated bywater channels Thefuel elementsare

arrangedinaserpentinepatternasshown,creatingfiveseparate

8-element“lobes”.Grossreactivityandpowerdistributioncontrol

duringoperationareachievedthrough theuseofrotating

con-troldrums withhafnium neutronabsorber plates on one side

TheATRcanoperateatpowers ashighas250MWwith

corre-spondingthermalneutronfluxesinthefluxtrapsthatapproach

5.0×1014N/cm2s.Typicaloperatingcyclelengthsareintherange

of45–60days

TheATRCisanearly-identicalopen-poolnuclearmockupofthe

ATRthattypicallyoperatesatpowersintherangeofseveral

hun-dredwatts.Itismostoftenusedwithprototypeexperimentsto

characterizetheexpectedchangesincorereactivityandpower

dis-tributionforthesameexperimentsintheATRitself.Usefulphysics

datacanalsobeobtainedforevaluatingtheworthandcalibrationof

controlelementsaswellasthermalandfastneutrondistributions

3 Computational methods and models

Computational reactorphysics modeling is used extensively

to support ATR experiment design, operations and fuel cycle

management,coreandexperimentsafetyanalysis,andmanyother applications.ExperimentdesignandanalysisfortheATRhasbeen supportedforanumberofyearsbyverydetailedandsophisticated three-dimensionalMonteCarloanalysis,typicallyusingtheMCNP5 code,coupledtoextensivefuelisotopebuildupanddepletion anal-ysis where appropriate On the other hand, the computational reactorphysicssoftwaretoolsandprotocolscurrentlyusedforATR corefuelcycleanalysisandoperationalsupportarelargelybasedon four-groupdiffusiontheoryinCartesiangeometry(Pfeifer,1971) withheavyrelianceon“tuned”nuclearparameterinputdata.The latterapproachisnolongerconsistentwiththestateofmodern nuclearengineeringpractice,havingbeensupersededinthe gen-eralreactorphysicscommunitybyhigh-fidelitymultidimensional transport-theory-basedmethods.Furthermore,someaspectsofthe legacyATRcoreanalysisprocessarehighlyempiricalin nature, withmany“correctionfactors”andapproximationsthatrequire veryspecializedexperiencetoapply.Butthestaffknowledgefrom the1960sand1970sthatisessentialforthesuccessful applica-tionofthesevariousapproximationsandoutdatedcomputational processesisrapidlybeingdepletedduetopersonnelturnoverand retirements

Fig.2showsthesuiteofnewtoolsmentionedearlier,howthey generallyrelatetooneanother,andhowtheywillbeappliedto ATR.Thisillustrationisnotacomputationalflowchartor proce-dureperse.Specificcomputationalprotocolsusingthetoolsshown

inFig.2forroutineATRsupportapplicationswillbepromulgated

Trang 3

J.W Nielsen et al / Nuclear Engineering and Design 295 (2015) 615–624 617

Fig 2.Advanced computational tool suite for the ATR and ATRC, with supporting verification, validation and administrative infrastructure.

Fig 3.ATR Fuel element geometry, showing standard fission wire positions used for intra-element power distribution measurements.

inapprovedproceduresandotheroperationaldocumentation.The

mostrecentreleaseoftheEvaluatedNuclearDataFiles(ENDF/B

Version7) is generally used to provide thebasic cross section

dataandothernuclearparametersrequiredforallofthe

model-ingcodes.TheENDFphysicalnucleardatafilesareprocessedinto

computationally-usefulformatsusingtheNJOYorAMPX(Radiation

SafetyInformationComputationalCenter,2010)codesas

applica-bletoaparticularmodule,asshownatthetopofFig.2

4 Validation measurements

Inthenewvalidationexperimentofinterest here,activation

measurementsthat canberelated tothetotalfission powerof

eachofthe40ATRCfuelelementsweremadewithfissionwires

composedof10%byweight235Uinaluminum Thewireswere

1mmindiameterandapproximately0.635cm (0.25 inlength andwereplacedinvariouslocationswithinthecoolingchannelsof eachfuelelementasshowninFig.3,atthecoreaxialmidplane.The totalmeasuredfissionpowersforthefuelelementsareestimated usingappropriately-weightedsumsofthemeasuredfissionrates

intheU/Alwireslocatedineachelement(DurneyandKaufman,

1967)

Fig.4 shows the computeda priori(MCNP5)fission powers forthe40ATRCfuelelements,alongwiththemeasuredelement powers basedonthefissionwire measurements.The top num-ber(black)inthecenterofeachelementistheapriorielement power(W)calculatedbyMCNP5.Thebottomnumber(red)isthe measurement.Totalmeasuredpowerwas875.5W.Uncertainties

Trang 4

618 J.W Nielsen et al / Nuclear Engineering and Design 295 (2015) 615–624

Fig 4.Calculated (black) and measured (red) fuel element powers (W) for ATRC Depressurized Run Support Test 12-5 The fuel element numbers are in bold type.

associatedwiththemeasuredelementpowersareapproximately

5%(1).Thepowersforthefive8-elementATRcore“lobes”arealso

keyoperatingparametersandareformedbysummingthepowers

ofElements2–9fortheNortheastLobe,Elements12–19forthe

SoutheastLobe,Elements22–29fortheSouthwestLobe,Elements

32–39fortheNorthwestLobeandElements1,10,11,20,21,30,

31,and40fortheCenterLobe.Thesignificanceofthelobepowers

willbediscussedinmoredetaillater

5 Power distribution adjustment protocol

Analysisof the computed and measuredpower distribution

forcodevalidationpurposesisaccomplishedbyanadaptationof

standardleast-squaresadjustmenttechniquesthatarewidelyused

inthereactorphysicscommunity(ASTM,2008).Theleast-square

methodologyisquitegeneral,andcanbeusedtoadjustanyvector

ofaprioricomputedquantitiesagainstavectorofcorresponding

measureddatapointsthatcanberelatedtothequantitiesof

inter-estthroughamatrixtransform.Thisproducesa“bestestimate”of

thequantitiesofinterestandtheiruncertainties,whichcanthen

beusedtoestimatethebias,ifany,andtheuncertainty ofthe

computationalmodel,and asatoolfor improvingthemodelas

appropriate

Inthefollowingdescriptionoftheadjustmentequationsused

inthiswork,matrixandvectorquantitieswillgenerallybe

indi-catedbyboldtypeface.Insomecases,matricesandvectorswill

beenclosedinsquarebracketsforclarity.Thesuperscripts,“−1”

and“T”,respectively,indicatematrixinversionandtransposition, respectively

Webeginthemathematicaldevelopmentbyconstructingthe followingoverdeterminedsetoflinearequations:

a 11 a 12 a 13 ··· ··· a1,NE

a 21 a 22 a 23 ··· ··· a2 ,NE

a NM,1 aNM,2 aNM,3 ··· ··· aNM,NE

1 0 0 ··· ··· 0

0 1 0 ··· ··· 0

0 0 1 ··· ··· 0

0 0 0 ··· ··· 1

P 1

P 2

P 3

P NE

=

Pm 1

Pm 2

Pm NM

P 01

P 02

P 03

P0NE

andthesupportingdefinition

[Cov (Z)]=



[Cov (Pm)] [0]

[0] [Cov (P0)]

Trang 5

J.W Nielsen et al / Nuclear Engineering and Design 295 (2015) 615–624 619

whereNEisthetotalnumberoffuelelements(i.e.40forATR)and

NMisthenumberoftheseelementsforwhichelementpower

mea-surementshavebeenmade.NMistypicallyanumberbetween1

andNEalthoughmultiplepowermeasurementsforthesamefuel

elementsmayoptionallybeincludedifavailable,possibly

caus-ingNMtobegreaterthan NE.ThevectorPis thedesiredbest

least-squaresestimateforthepowersofall40fuelelements,the

vectorPm(thefirstNMentriesin[Z])containstheNMmeasured

powersandthevectorP 0 (thelast40entriesin[Z])containsthe

40aprioriestimates,P0ifortheelementpowers,extractedfrom

thecomputationalmodelofthevalidationexperiment

configura-tion.ThetopNMrowsofthematrixAeachcontainentriesai,jthat

areequaltozeroexceptforthecolumncorrespondingtothe

ele-mentforwhichthemeasurementontheright-handsideinthat

rowwas made,where theentry would be1.0 The bottom 40

rowsofthematrixAcorrespondtotherowsofa40×40identity

matrix

NotethattheformulationdescribedbyEq.(1)variesfromthat

ofseveralotherleast-squaresadjustmentalgorithmsusedin

reac-torphysicsinthesensethattheparametersinthematrixonthe

left-handsideareallconstants.Thisisasimplificationinthatthere

arenoadjustableparameters(e.g.nuclearcrosssections)onthe

lefthandsidethatcanbemanipulatedwithintheiruncertainties

toproducestatisticalconsistencyinaleast-squaressensebetween

thecomputedaprioripowervectorandthemeasuredpowervector

BasicallyEq.(1)maybethoughtofasamethodologyforadjusting

theaprioripowervectorandthemeasurementvector(withintheir

respectiveuncertainties)directlytothesamebest-estimatefuel

elementpowervectorP,whichtherebycontainsallofthe

avail-ableinformationabouttheaprioriandmeasuredpowervectors

and theircorresponding covariance matrices The methodology

alsoenablesamathematicallyvalidadjustmentoftheentirea

pri-orielementpowervectorandcomputationofassociatedreduced

uncertaintyforallofthefuelelementsevenifmeasurementsare

notavailableforsomeofthefuelelements.Thisasaresultofthe

waythattheaprioricovariancematrix(describedfurtherbelow)

canserveasaninterpolatingfunctionaswellasastatistical

weight-ingfunctionintheadjustment(Williams,2012)

Eq.(2)includestheNM×NMandNE×NEcovariancematrices

forthemeasuredpowervectorandfortheaprioripowervector,

respectively.Thenumericalentriesfor[Cov(Pm)]arebasedonthe

reporteduncertaintiesoftheexperimentaldataintheusual

man-ner.Thecovariancematrix[Cov(P 0 )]fortheaprioripowervectoris

fundamentaltothesimplifiedadjustmentmethodologydescribed

here.Itmaybecomputedexplicitly(atleastthediagonalelements)

bypropagatingallofthecomputationalmodeluncertainties(i.e

uncertaintiesassociatedwiththenucleardata,component

dimen-sions, materialcompositions and densities, etc.) throughtothe

computedpowervectorusingvariousestablishedtechniques.On

theotherhand,andwithmanysimplifyingassumptionsthatmayor

maynotbeappropriate,[Cov(P 0)]canalsobeapproximatedbased

ontheassumptionofanelement-to-elementfissionpower

correla-tionfunctionthatdecreasesexponentiallywithdistancebetween

anytwoelements, normalizedtotheestimatedvariancesofthe

computedpowersbasedonhistoricalexperienceandengineering

judgment

However,itmaynotalwaysbepracticaltocomputethefulla

prioricovariancematrixexplicitlybypropagatingalloftheinput

uncertaintiesbut,atthesametime,asimpleexponential

approx-imationfor theoff-diagonal entriesmaynot bewellsuited for

computingthefuelelementpowercorrelationmatrixneededto

construct[Cov(P 0)]inEq.(2).Foranyofseveralphysicalreasons

thefuelelementpowercorrelationmatrixforaparticularfacility

mayhaveamorecomplexstructurethanthesimple

diagonally-dominant arrangement that an exponential formula provides

Nonetheless, the availability of an accurate, realistic power

correlationmatrixisacrucialprerequisiteforthesuccessful appli-cationoftheleast-squaresmethodology(Williams,2012)

Toaddressthisissue,weintroduceanintermediate methodol-ogyforobtaining[Cov(P 0)]forATRapplicationsbasedonthefission matrixconcept,furtherdescribedbelow.Themethodfeaturesthe abilitytoincorporateexplicitcalculations ortouseengineering estimatesforthediagonalentriesof[Cov(P 0)]whilestill represent-ingtheoff-diagonalentriesrealistically,butsignificantlyreducing thecomputationaleffortrequired,offeringthepossibilityof effi-cientreal-timeonlinevalidationdataassimilation.Thisapproach was required for ATR because of the complex serpentine core arrangement

5.1 CalculationoftheATR/ATRCfissionmatrix Eachentry,fi,j,oftheso-called“FissionMatrix”,Ffora criti-calsystemcomposedofaspecifiednumberofdiscretefissioning regionsisdefinedasthenumberoffirst-generationfission neu-tronsborninregioniduetoaparentfissionneutronborninregion

j(CarterandMcCormick,1969).Theindexicorrespondstoarow

ofthefissionmatrixandtheindexjcorrespondstoacolumn.In thecaseoftheATRandtheATRCapplicationofinterestherethe fissioningregionsaredefinedtocorrespondtothefuelelements,

sothefissionmatrixhasdimensionsof40×40

Assumenowthattheexactspace,angularandenergy distribu-tionoftheparentfissionsourceneutronswithineachfuelelement

isknownfroma detailedhigh-fidelitytransport calculationand thatthisinformationisincorporatedintotheformationofF.Then constructthefollowingeigenvalueequation:

S= 1 k

whereSisthesuitably-normalized40-elementfundamentalmode vectoroftotalfissionsourceneutronsproducedineachofthe40 fuelelementsandkisthefundamentalmodemultiplicationfactor UndertheseconditionsthesolutiontoEq.(3)willbethesameasis obtainedbyperformingthecorrespondinghigh-fidelitytransport calculationforthesameconfigurationandintegratingtheresulting fissionsourceovereachfuelelement.Ofcourse,ifonealreadyhas thesolutionforthedetailedhigh-fidelitytransportmodelthenEq (3)doesnotprovideanynewinformation,butthefissionmatrix conceptcanstillbeveryusefulandinstructive.Inparticular,there hasbeenagreatdealofeffortovertheyearsfocusedonacceleration

ofMonteCarlocalculationsusingfissionmatrixbasedtechniques, withcertainassumptionstosimplifytheestimationofthefission matrixelementsasthecalculationproceeds,withoutfully solv-ing thehigh-fidelity problemexplicitly beforehand (Carter and McCormick,1969;KitadaandTakeda,2001;DufekandGudowski, 2009;WennerandHaghighat,2011;Carneyetal.,2012)

In theATR application presented here we employ a fission matrixbasedapproachtodeterminethefuelelementtoelement fissionpowercorrelationmatrixandtherebytheassociated covari-ancematrix[Cov(P 0)]thatisrequiredinEq.(2).Theexampleuses theMCNP5codefortherequiredcomputations,butinprincipal theideashouldbeamenabletoimplementationusingany multidi-mensionaldeterministicorstochastictransportsolutionmethod, providedthatasufficientlevelofspatial,angular,andenergy res-olutioncanbeachievedinthedetailedtransportsolutionneeded foranaccuratecalculationofthefissionmatrix

Inthecase oftheATRand ATRC,thefuelelementgeometry (Fig.3)isrepresentedessentiallyexactlyinMCNP5.Eachfuelplate hasaseparateregionforthehomogeneousuranium–aluminum fis-silesubregionandtheadjacentaluminumcladdingsubregionson eachsideofthefueledlayer.Burnableboronpoisonisalsoexplicitly representedinthefuelplateswhereitispresent.Coolantchannels betweentheplatesareexplicitlyrepresented,asarethealuminum

Trang 6

620 J.W Nielsen et al / Nuclear Engineering and Design 295 (2015) 615–624

sideplatestructures.Theactivefuelheightis1.2192m(48 and

theelementshaveessentiallythesametransversegeometric

struc-tureatallaxiallevelswithintheactiveheight.Eachfuelelement

contains1075gof235U

High-fidelitycomputation of thefission matrixwithMCNP5

(orwithanyotherMonteCarlocodethatfeaturessimilar

capa-bilities) for this particular application is accomplished in two

easily-automatedstepsasfollows:

First,runawell-convergedfundamental-modeeigenvalue

(“K-Code” in MCNP5 parlance) calculation for the ATR or ATRC

configurationofinterest.Savethedetailedvolumetricfission

neu-tronsourceinformationthatincludesallfissionneutronsstarting

fromwithineachfuelelement.Theabsolutespatial,angular,and

energydistributionofthefissionneutronsbornineachfuelelement

mustbefullyspecifiedinthesourcefiledataforthatelement

Second,usingthefissionneutronsourcefileinformation

cre-atedasdescribedabove,runasetof40correspondingfixed-source

MCNP5calculationsfor thesamereactorconfigurationof

inter-est,oneseparatewell-convergedcalculationforeachfuelelement

fissionneutronsourceseparately.Thesecalculationsarerunwith

fission neutron production turned off using the “NONU” input

parameter.Fissionsinducedbytheoriginalfissionsourceneutrons

sampledfromthesourcefilearetherebytreatedascaptureinthe

sensethatnoadditionalfissionneutronsareproducedtobe

fol-lowedinsubsequenthistories.The“fission”ratethatistalliedin

thismannerforeachfuelelementinagivenMCNPfixed-source

cal-culationthusincludesonlythefirst-generationfissionsinducedin

thatelementbytheoriginalsourceneutronsemittedbythesource

fuelelementthatwasactiveforthatcalculation.Multiplyingthis

quantityforeachfuelelementinagivenMCNPcalculationbythe

averagenumberofneutronsperfissionandthendividingtheresult

bytheabsolutemagnitudeoftheoriginalfissionneutronsource

associatedwiththeactivefuelelementthenyieldsthecolumnof

thefissionmatrixcorrespondingtothatsourcefuelelement

Substitutionofthefissionmatrixfromtheaboveprocessinto

Eq.(3)shouldreproduce(withintheapplicablestatistical

uncer-tainties)theeigenvalueand thefuelelement-to-elementfission

neutronproductiondistributionoftheoriginalMCNPK-Code

cal-culation.Oncethisisverified,thefissionmatrixisreadyforusein

generatingtherequiredfuelelementfissioncorrelationmatrixas

describedbelow

5.2 Constructionofthefissioncovariancematrix

Tobeginthefissioncovariancematrixdevelopment,wemake

akeyfacilitatingassumptionthattheaveragenumberofneutrons

producedperfissionisthesameforallofthefissioningregionsin

themodel.ThisisreasonablefortheATRCexperimentofinterest

herebecauseall40fuelelementswereidenticalandunirradiated

Furthermore,MCNPcalculationsshowthattheneutronspectrum

doesnotvaryfromoneATRCfuelelementtothenextinamanner

thatsignificantlyaffectstheratioof238Ufissionsto235Ufissions

Thereforeinthiscaseeachentry,fi,j,ofthefissionmatrixalsocan

beinterpretedasthenumberoffirst-generationdaughterfissions

induced(orcorrespondingfissionenergyreleased)ineachregioni

duetoaparentfissionoccurringinregionj

Turningnowtotheactualcomputation ofthefissionpower

covariancematrixneededinEq.(2),itisimportanttonotethat

the40-elementfundamentalmodevectoroffissionpowers(or

fis-sionneutronsources)foreachofthe40ATRorATRCfuelelements

maybeviewedasavectorofrandomvariablesthatarecorrelated

becausefissionneutronsborninonefuelelementcaninducenew

fissionsnotonlyinthesameelement,butinanyotherfuelelement

aswell,althoughtheprobabilitythataneutronborninoneelement

willinduceafissioninanotherelementgenerallydecreaseswith

physicalseparationofthetwofuelelements

ReferringtoEq.(3),itcanbeseenthatifthefundamentalmode fission source(orpower) vector is premultipliedby thefission matrixtheresultingvector is,bydefinition,simplytheoriginal vectorwithall entriesmultipliedbyk-effective Furthermoreif thefundamentalmodesourceorpowervectorisarbitrarily per-turbedinsomemanner,thenpremultiplicationoftheperturbed vectorbythefissionmatrixwillforceitbacktowardtheoriginal fundamentalmodeshape,althoughanumberofiterationsmaybe requiredtoconvergebacktotheoriginalvectorinapplicationssuch

asATR,wherethedominanceratioisfairlylarge.Theabove obser-vationssuggestthefollowingstochasticestimationprocedurefor constructingtherequiredfissioncorrelationmatrix:

(1)Generateavectorof40normally-distributedrandomnumbers whosemeanis1.0andwhosestandarddeviationissome nom-inalsmallfractionofthemean,e.g.10%.Thefractionspecified forthestandarddeviationisarbitrary,butitshouldbesmall enoughsuchthatessentiallynonegativerandomnumbersare everproducedandatthesametimeitshouldbelargeenough

toavoidround-offerrorsintheprocessdescribedbelow (2)Multiplyeachofthe40elementsofthefundamentalmode fis-sionpowervectorbythecorrespondingelementoftherandom numbervectorfromStep1.Ontheaverage,halfofthefission powerentriesthatarerandomlyperturbedinthismannerwill increaseandhalfwilldecrease

(3)Premultiplytheperturbed fundamental-mode fissionpower vectorfromStep2bythefissionmatrixandstoretheresulting perturbed“first-generation”fissionpowervector

(4)RepeatSteps1–3astatisticallyappropriatenumberoftimes,N (e.g.N=1000),toproduceabatchofN40-elementperturbed

“first-generation”fissionpowervectors

(5)Compute the40×40 covariance matrix for theelementsof theN40-elementperturbed “first-generation”fissionpower vectorsusingthefundamentaldefinition ofcovariance.This completesan“inneriteration”,producingastatisticalestimate

ofthefissionpowercovariancematrix

(6)Repeat Steps1–5many times,tallyinga runningaverageof thecovariance matrices that areproduced untilsatisfactory convergenceisobtained.Thencomputethecorrelationmatrix associatedwiththeconvergedcovariancematrix

(7)Constructthecovariancematrixfortheaprioripowers com-puted by the modeling code by combining the correlation matrixfromStep6withavectorofassumedapriori uncer-tainties that are to be associated with the a priori power vector At this point one could also manually add a fully-correlated componenttothecovariancematrixtorepresent potentialsystematicuncertainties(e.g.uncertaintyinthetotal powernormalizationoftheapriorimodel)inadditiontothe partially-correlated uncertainties that are estimated by the aboveprocedure

Inmathematicaltermsthisprocesscanbeprogrammedas fol-lows:

First,define

[PD]=

P01

P02

P03

..

P0,NE

(4)

Trang 7

J.W Nielsen et al / Nuclear Engineering and Design 295 (2015) 615–624 621

wherethediagonalelementsof[PD]correspondtotheapriori

com-putedfuelelementfissionpowersandallotherentriesarezero

Nowdefinethematrixofrandomnumbers

[R] =

r11 r12 ··· ··· r1 ,N

rNE ,1 rNE ,2 rNE ,N

(5)

where Nislargeand each rij is a randomnumber drawnfrom

anormallydistributedpopulationwhosemeanis1.0andwhose

standarddeviationisasmallfractionofthemean(e.g.10%).Then

formthematrixproduct:

[PP]= [PD][R] =

pp11 pp12 ··· ··· pp1 ,N

ppNE,1 ppNE,2 ppNE ,N

(6)

whereeach columnof[PP]isa vectorofapriorielement

pow-ersperturbedbythecorrespondingrandomnumbersinthesame

columnof[R]

Nowpremultiply[PP]bythefissionmatrix[F]toobtainamatrix

[FPP] of N“first-generation”fuel element powervectors

corre-spondingtoeachoriginalperturbedpowervector:

Theelementsoftherandomly-perturbedpowervectors

com-prising [PP] are uncorrelated, but the elements of each of the

correspondingfirst-generationpowervectorscomprising[FPP]will

bepositivelycorrelatedbyvirtueofthefactthatafissionoccurring

inonefuelelementcancauseanext-generationfissionnotonly

inthatelementbutalsoinanyotherelement,asquantifiedbythe

fissionmatrix

Now,recognizingthattheNcolumnsof[FPP]arerandom

sam-ples of an “average” first-generation fission power vector [P1]

(whosespatialshapecanincidentallybeshowntobestatistically

identicaltothatoftheoriginalpowervector[P0]),thecovariance

oftheelementsof[P1]maybecomputedas:

where[DM]isthedifferencematrix:

and[U]isanNE-row,N-columnmatrixwhoseentriesareall1.0

Repeattheprocessdescribedaboveanumberoftimes,

tally-ingarunningaverageof[Cov(P1)]untilsatisfactoryconvergence

isobtained.Thencomputethecorrelationmatrixcorresponding

totheconvergedcovariancematrix[Cov(P1)]usingthestandard

definition This is the desired fuel element-to-element power

correlationmatrix.Finally, usethis powercorrelationmatrixto

constructamatrix[Cov(P0)]thatcorrespondstotheactualabsolute

uncertaintiesassociatedwiththeelementsof[P0]ratherthanthe

arbitraryuniformperturbationusedtoobtain[Cov[P1]],andthen

addafully-correlatedcomponentto[Cov(P0)]ifdesired

5.3 Solutionoftheadjustmentequations Withthefissionpowercovariancematrixnowavailable,Eqs (1)and(2)canbecombinedintheusualmannertoconstructthe covariance-weighted“NormalEquations”(e.g.Meyer,1975)forthe system,yielding:

with

Eq.(10)canbesolvedbyanysuitablenumericaloranalytical methodtoyieldtheadjustedelementpowervectorP.The differ-encebetweentheadjustedpowervectorandtheaprioripower vectorthengivesanestimateofthebiasofthemodel,ifany,relative

tothebest-estimatepowervector

Also,sincethesolutiontoEq.(10)is:

thecovariancematrixfortheadjustedpowersmaybecomputed

bythestandarduncertaintypropagationformula:

where

Thediagonalelementsofthecovariancematrixfortheadjusted powerscanthenalsobeusedtoestimatetheuncertaintyinthe differencebetweentheaprioriandtheadjustedpowervectors.It mayalsobenotedinpassingthatthecovariance matrixforthe adjustedpowervectorisalsosimplytheinverseofB.

6 Results and discussion

The a priori and measured power distributions from Fig 4 areplottedinFig.5,alongwiththeadjustedpowerdistribution correspondingtothe measuredpowers ofall 40elements The covariancematrixfortheaprioripowervectorwascomputedas describedaboveandnormalized toanestimatedapriori uncer-tainty of 10%(1) for the diagonalentries, based onhistorical experience.Thecovariancematrixforthemeasuredpowerswas assumedtohavediagonalentriesof5%(1)basedonhistorical experienceandnooff-diagonalentriesforthisexample.Itisa sim-plemattertoincludeappropriateoff-diagonalelementsinthelatter matrixtoaccountforcorrelations,forexamplefromacommon cal-ibrationofthedetectorusedtomeasuretheactivityofthefission wires,ifdesired.Thereduceduncertaintiesfortheadjusted ele-mentpowersinFig.5,computedusingEq.(7),rangedfrom3.1%

Fig 5.Fuel element power distributions for ATRC Depressurized Run Support Test 12-5 The adjusted power is computed using the measured powers of all 40 fuel

Trang 8

622 J.W Nielsen et al / Nuclear Engineering and Design 295 (2015) 615–624

Fig 6.Fission power correlation matrix for the ATRC The axis numbering

corre-sponds to the fuel element numbers shown in Fig 4

Fig 7. Fission matrix for the ATRC The axis numbering corresponds to the fuel

element numbers shown in Fig 4

to3.7%.Thecorrelationmatrixassociatedwiththefissionpower

covariancematrixusedtocomputetheadjustedpowervectoris

shownasacontourplotinFig.6.Keyoff-diagonalstructural

fea-tures,suchasthecorrelationsbetweennearby,butnon-adjacent,

Elements1and10,orElements11and20,etc.arereadilyapparent

TheunderlyingfissionmatrixforthisexampleisshowninFig.7

Thesamegeneralstructureisapparent.Notealsothatthefission

matrixisnotnecessarilysymmetric,whilethefissioncorrelation

matrixissymmetricbydefinition

Fig.8showstheresultofanadjustmentoftheMCNPapriori

fluxwhereonlythepowersoftheodd-numberedfuelelementsin

Test12-5wereincludedintheanalysis.Thissimulatesthe

rela-tivelycommonATRpracticewhereonlytheodd-numberedfuel

elementpowersareactually measured,and thepowerforeach

even-numberedelementisassumedtobeequaltothemeasured

powerintheodd-numberedelementontheoppositesideofthe

samelobe.Forexample,thepowerinElement2isassumedequal

tothepowerinElement9,thepowerinElement4isassumed

equaltothepowerin Element7,and soforth aroundthecore

Theoften-questionablevalidityofthisassumptiondependsonthe

overallsymmetryof thereactorconfiguration.Inthefuturethe

assumptionofsymmetrywillbereplacedbythemorerigorous

least-squareadjustmentproceduredescribedheretoestimatethe

powersintheeven-numberedelements.Thereduced

uncertain-tiesfortheadjustedelementpowersinFig.8rangedfrom3.9%

to4.3% forthe odd-numbered elementsand from4.0% to5.2%

fortheeven-numberedelements,demonstratinghowsignificant

uncertaintyreductioncanoccurintheadjustedpowersevenfor

Fig 8. Fuel element power distributions for ATRC Depressurized Run Support Test 12-5 The adjusted power is computed using the measured powers of only the 20 odd-numbered fuel elements.

elementsforwhichnomeasurementisincluded.Thisisaresultof theweightedinterpolationeffectprovidedbytheelementpower covariancematrix

Economizing onthenumber of measurements even further, Fig.9showsanadjustmentwhereonlythemeasuredpowersfor Elements 8,18, 28, and 38 wereincluded in theanalysis.This arrangementsimulates anotherATRprotocolthat is sometimes usedbecausetheseelementsare representativeof the highest-poweredelementsin each outer lobe Inthis case thereduced uncertaintiesfortheadjustedelementpowersrangedfrom4.4%

to4.5%forElements8,18,28and38,from6.6%to7%forthe imme-diatelyadjacentelementsandupto9.9%fortheelementsthatwere themostdistantfromtheelementsforwhichmeasurementswere made.It isnotableherethatsomeuncertaintyreductionoccurs evenforthemostremotefuelelements

Fig.10illustratesanotherpossibleuseofthetechniques devel-opedinthiswork.TheATRhasanonlinelobepowermeasurement systembutitdoesnothaveanonlinesystemformeasurementof individualfuelelementpowers.Measurementsofindividual ele-ment powerscurrently canonlybe donebytherather tedious fissionwiretechniquedescribedearlier.Theleast-squares method-ology outlined here also offers a simple, but mathematically rigorous,approachforestimatingthefissionpowersofall40fuel ATRfuelelementsand theiruncertainties usingtheonlinelobe powermeasurementsasfollows:

InthecaseofFig.10theonlinelobepowermeasurementsare simulatedbythefissionwiremeasurementsusedfortheprevious examples.Thefirstfiverowsofthematrixontheleft-handside

ofEq.(1)describethefivesimulatedonlinelobepower measure-ments.Theserowseachcontainentriesof0.125ontheleft-hand sidefortheeight(8)elementsincludedinthelobecorresponding

tothatrowandentriesofzeroelsewhere.Therighthandsideof eachofthesefirstfiverowscontainstheaverageofthemeasured powersfromthefissionwiresfortheloberepresentedbythatrow Forexamplethefirstrow(Lobe1)contains entriesof0.125for elements2through9,andtheaverageofthemeasuredpowersfor elements2through9appearsontherighthandside,andsoforthfor theotherlobes.Thereduceduncertaintiesfortheadjustedpowers showninFig.10forthe40elementsrangefrom6.4%to8.3% TheresultsshowninFig.10thusillustrateapractical applica-tionwherethepowersforeachATRlobethataremeasuredonline couldbeenteredintoEq.(1)eachtimetheyareupdated(everyfew seconds),andacorrespondingestimateforalloftheindividual ele-mentpowerscouldbeimmediatelyproduced.Ofcoursetheapriori powervectorwouldneedtoberecalculatedregularlyasthecore depletes,controldrumsrotate,andneckshimsarepulledduring

acycle.Thiscouldhoweverbeautomatedtoalargeextent,andit

Trang 9

J.W Nielsen et al / Nuclear Engineering and Design 295 (2015) 615–624 623

Fig 9. Fuel element power distributions for ATRC Depressurized Run Support Test 12-5 The adjusted power is computed using the measured powers of elements 8, 18, 28 and 38 only.

Fig 10.Fuel element power distributions for ATRC Depressurized Run Support Test

12-5 The adjusted power is computed using the measured powers of the five core

lobes.

Fig 11.Comparison of a priori element powers (MCNP5), the adjusted element

powers based on the measured lobe powers formed from the original detailed fuel

element power measurements, and the actual detailed element power

measure-ments.

shouldultimatelybequitepractical,forexample,toupdatethea prioripowervectorfromthemodelatleastdailyandperhapseven hourly

Finally,Fig.11showsacomparisonoftheapriorielement pow-ers andtheadjusted elementpowers based onthelobepower measurements(Fig.10)withtheoriginaldetailed40-element mea-suredpowerdata.Recallthattheadjustedpowersinthisfigureare basedonlyonthemeasuredlobepowersthatwerepre-computed

byaveragingthedetailedelementpowermeasurementsforeach lobe.Itisinterestingtonotethattheadjustedpowerdistribution curvestillrecapturesasignificantamountofthedetailedshape changerelativetotheaprioripowerdistribution,eventhoughthe detailsinthemeasuredpowerdistributionwerelargelyaveraged outwhencomputingthesimulatedmeasuredlobepowersused fortheadjustment.Thecovariancematrixplaysakeyroleinthis process

7 Conclusions

Insummary,thispaperpresentsarelativelysimplebut effec-tivefission-matrix-basedmethodforgeneratingtherequiredfuel elementcovarianceinformationneededfordetailedstatistical vali-dation and best-estimate adjustment analysis of fission power distributionsproducedbycomputationalreactorphysicsmodelsof theATR(orforthatmatter,anyothertypeofreactor).Themethod hasbeendemonstratedusingtheMCNP5neutronicscodebutitcan

beusedwithanyotherMonteCarloneutronicssimulationcodeas wellaswithanydeterministicneutrontransportcodethat pro-videsasufficientlevelofspatial,angular,andenergyresolution withineachfissioningregionofinterest.Analysesofthistypeare usefulnotonlyforquantifyingthebiasanduncertaintyof com-putationalmodelsforaspecificmeasuredreactorconfigurationof interest,buttheyalsocanserveasguidesformodelimprovement andforestimation ofapriorimodelinguncertaintiesforrelated reactorconfigurationsforwhichnomeasurementsareavailable

Acknowledgements

Thiswork wassupportedby theU.S Department of Energy (DOE), via the ATR Life Extension Program under BattelleEn-ergy Alliance, LLC Contract no.DE-AC07-05ID14517 with DOE The authorsalsowish togratefully acknowledgeseveral useful

Trang 10

624 J.W Nielsen et al / Nuclear Engineering and Design 295 (2015) 615–624

discussionswithDr.JohnG.Williams,UniversityofArizona,onthe

generalsubjectofcovariancematricesandtheirroleinthistypeof

analysis

References

ASTM (American Society for Testing and Materials), 2008 Standard guide for

appli-cation of neutron spectrum adjustment methods in reactor surveillance In:

ASTM-E944-08 ASTM.

Broadhead, B.L., Rearden, B.T., Hopper, C.M., Wagschal, J.J., Parks, C.V., 2004.

Sensitivity- and uncertainty-based criticality safety validation techniques Nucl.

Sci Eng 146 (34), 0–366.

Carney, S., Brown, F., Kiedrowski, B., Martin, W., 2012 Fission matrix capability for

MCNP Monte Carlo Trans Am Nucl Soc 107, 494–497.

Carter, L.L., McCormick, N.J., 1969 Source convergence in Monte Carlo calculations.

Nucl Sci Eng 36, 438–441.

DeHart, M.D., 2006 Advancements in generalized-geometry discrete ordinates

transport for lattice physics calculations In: Proc of PHYSOR—2006,

Ameri-can Nuclear Society Topical Meeting on Reactor Physics: Advances in Nuclear

Analysis and Simulation, September 10–14, 2006, Vancouver, BC, Canada.

Dufek, J., Gudowski, W., 2009 Fission matrix based Monte Carlo criticality

calcula-tions Ann Nucl Energy 36, 1270–1275.

Durney, J.L., Kaufman, N.C., 1967 Calculating reactor power from activation

tech-niques as applied to unusual fuel geometry (ATRC) In: IN-1047 Idaho National

Laboratory.

Goorley, T., Bull, J., Brown, F., et al., 2004 Release of MCNP5 RSICC 1.30 In:

LA-UR-04-4519 Los Alamos National Laboratory, Los Alamos.

Hollenbach, D.F., Petrie, L.M., Landers, N.F., 1996 KENO-VI A general quadratic

ver-sion of the KENO program In: ORNL/TM-13011 Oak Ridge National Laboratory,

Oak Ridge.

Kitada, T., Takeda, T., 2001 Effective convergence of fission source distribution in Monte Carlo simulation J Nucl Sci Technol 38, 324–329.

Leppänen, J., 2012 Serpent progress report 2011 In: VTT-R-05444-12 Technical Research Centre of Finland, Finland.

McGhee, J.M., Wareing, T.A., Barnett, D.J., 2006 ATTILA Version 5: User Manual Transpire Inc, Gig Harbour, WA.

Meyer, S.L., 1975 Data Analysis for Scientists and Engineers John Wiley and Sons, USA.

Nigg, D.W., Nielsen, J.W., Chase, B.M., Murray, R.K., Steuhm, K.A., Unruh, T., 2012a.

Improved computational neutronics methods and validation protocols for the advanced test reactor In: Proceedings of American Nuclear Society Topical Meeting on Advances in Reactor Physics—PHYSOR 2012, April 15–20, 2012, Knoxville, TN, USA.

Nigg, D.W., Nielsen, J.W., Taylor, G.K., 2012b Validation protocols to support the neutronics modeling, simulation, and V&V upgrade for the advanced test reactor Trans ANS 106, 890–893.

Pfeifer, C.J., 1971 PDQ reference manual II In: WAPD-TM-947(L) Bettis Atomic Power Laboratory.

Radiation Safety Information Computational Center, 2010 NJOY99—Code System for Producing Pointwise and Multigroup Neutron and Photon Cross Sections from ENDF/B Data and AMPX77—Modular Code System for Generating Coupled Multi-group Neutron–Gamma Libraries from ENDF/B Oak Ridge National Laboratory,

http://www-rsicc.ornl.gov.

Studsvik Scandpower, 2008 HELIOS Methods Version 1.10.

Sutton, T.M., et al., 2007 The MC21 Monte Carlo transport code In: LM-06K144 Knolls Atomic Power Laboratory and Bettis Laboratory.

Wenner, M., Haghighat, A., 2011 A Fission matrix based methodology for achieving

an unbiased solution for eigenvalue Monte Carlo simulations Prog Nucl Sci Technol 2, 886–892.

Williams, J.G., 2012 The role of the prior covariance matrix in least-squares neutron spectrum adjustment Trans ANS 106, 881–883.

Ngày đăng: 24/12/2022, 00:50

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN